Loading…

Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming

Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2018-08, Vol.54 (4), p.2053-2066
Main Authors: Tang, Gao, Jiang, Fanghua, Li, Junfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3
cites cdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3
container_end_page 2066
container_issue 4
container_start_page 2053
container_title IEEE transactions on aerospace and electronic systems
container_volume 54
creator Tang, Gao
Jiang, Fanghua
Li, Junfeng
description Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem.
doi_str_mv 10.1109/TAES.2018.2803558
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2018_2803558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8283683</ieee_id><sourcerecordid>2117131476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-AONNE6-HPf1ad0kIKgkGE8b1UrsORmDFdkPx11uEeHVy8j7vOcmD0D2QAQDJnvLheD6gBNSAKsKEUBeoB0KkSSYJu0Q9EqMkowKu0U0I67hyxVkPLZ87u0lmu7be6g2euq8kX_kutDj3em1N6_wB_6X1j25r1-BFqJslnjRl7WOM32y7ciXWTYnnnTE2hHpv8cg1e_uN371ber3dxsYtuqr0Jti78-yjxfM4H70m09nLZDScJoaJrE1sCpTolFMmbPkhjaaZqspKEauFIMYyyAAqxkVpgHHDpdREcGU4EVKnsmJ99Hi6u_Pus7OhLdau8018WVCAFBjwVEYKTpTxLgRvq2LnowB_KIAUR5_F0Wdx9FmcfcbOw6lTW2v_eUUVk4qxXwbLcf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117131476</pqid></control><display><type>article</type><title>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tang, Gao ; Jiang, Fanghua ; Li, Junfeng</creator><creatorcontrib>Tang, Gao ; Jiang, Fanghua ; Li, Junfeng</creatorcontrib><description>Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2018.2803558</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convexity ; Fuels ; Indirect method ; Lagrange multiplier ; lossless convexification ; low thrust ; Optimal control ; Performance analysis ; pseudospectral method ; Robustness ; successive convex programming (SCP) ; Switches ; Thrust ; Trajectory optimization</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2018-08, Vol.54 (4), p.2053-2066</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</citedby><cites>FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</cites><orcidid>0000-0001-8411-5603 ; 0000-0003-0156-4759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8283683$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Tang, Gao</creatorcontrib><creatorcontrib>Jiang, Fanghua</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><title>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem.</description><subject>Convexity</subject><subject>Fuels</subject><subject>Indirect method</subject><subject>Lagrange multiplier</subject><subject>lossless convexification</subject><subject>low thrust</subject><subject>Optimal control</subject><subject>Performance analysis</subject><subject>pseudospectral method</subject><subject>Robustness</subject><subject>successive convex programming (SCP)</subject><subject>Switches</subject><subject>Thrust</subject><subject>Trajectory optimization</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhujiYj-AONNE6-HPf1ad0kIKgkGE8b1UrsORmDFdkPx11uEeHVy8j7vOcmD0D2QAQDJnvLheD6gBNSAKsKEUBeoB0KkSSYJu0Q9EqMkowKu0U0I67hyxVkPLZ87u0lmu7be6g2euq8kX_kutDj3em1N6_wB_6X1j25r1-BFqJslnjRl7WOM32y7ciXWTYnnnTE2hHpv8cg1e_uN371ber3dxsYtuqr0Jti78-yjxfM4H70m09nLZDScJoaJrE1sCpTolFMmbPkhjaaZqspKEauFIMYyyAAqxkVpgHHDpdREcGU4EVKnsmJ99Hi6u_Pus7OhLdau8018WVCAFBjwVEYKTpTxLgRvq2LnowB_KIAUR5_F0Wdx9FmcfcbOw6lTW2v_eUUVk4qxXwbLcf8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Tang, Gao</creator><creator>Jiang, Fanghua</creator><creator>Li, Junfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8411-5603</orcidid><orcidid>https://orcid.org/0000-0003-0156-4759</orcidid></search><sort><creationdate>20180801</creationdate><title>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</title><author>Tang, Gao ; Jiang, Fanghua ; Li, Junfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convexity</topic><topic>Fuels</topic><topic>Indirect method</topic><topic>Lagrange multiplier</topic><topic>lossless convexification</topic><topic>low thrust</topic><topic>Optimal control</topic><topic>Performance analysis</topic><topic>pseudospectral method</topic><topic>Robustness</topic><topic>successive convex programming (SCP)</topic><topic>Switches</topic><topic>Thrust</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Gao</creatorcontrib><creatorcontrib>Jiang, Fanghua</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Gao</au><au>Jiang, Fanghua</au><au>Li, Junfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>2053</spage><epage>2066</epage><pages>2053-2066</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2018.2803558</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8411-5603</orcidid><orcidid>https://orcid.org/0000-0003-0156-4759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2018-08, Vol.54 (4), p.2053-2066
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2018_2803558
source IEEE Electronic Library (IEL) Journals
subjects Convexity
Fuels
Indirect method
Lagrange multiplier
lossless convexification
low thrust
Optimal control
Performance analysis
pseudospectral method
Robustness
successive convex programming (SCP)
Switches
Thrust
Trajectory optimization
title Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel-Optimal%20Low-Thrust%20Trajectory%20Optimization%20Using%20Indirect%20Method%20and%20Successive%20Convex%20Programming&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Tang,%20Gao&rft.date=2018-08-01&rft.volume=54&rft.issue=4&rft.spage=2053&rft.epage=2066&rft.pages=2053-2066&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2018.2803558&rft_dat=%3Cproquest_cross%3E2117131476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117131476&rft_id=info:pmid/&rft_ieee_id=8283683&rfr_iscdi=true