Loading…
Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming
Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2018-08, Vol.54 (4), p.2053-2066 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3 |
container_end_page | 2066 |
container_issue | 4 |
container_start_page | 2053 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 54 |
creator | Tang, Gao Jiang, Fanghua Li, Junfeng |
description | Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem. |
doi_str_mv | 10.1109/TAES.2018.2803558 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2018_2803558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8283683</ieee_id><sourcerecordid>2117131476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-AONNE6-HPf1ad0kIKgkGE8b1UrsORmDFdkPx11uEeHVy8j7vOcmD0D2QAQDJnvLheD6gBNSAKsKEUBeoB0KkSSYJu0Q9EqMkowKu0U0I67hyxVkPLZ87u0lmu7be6g2euq8kX_kutDj3em1N6_wB_6X1j25r1-BFqJslnjRl7WOM32y7ciXWTYnnnTE2hHpv8cg1e_uN371ber3dxsYtuqr0Jti78-yjxfM4H70m09nLZDScJoaJrE1sCpTolFMmbPkhjaaZqspKEauFIMYyyAAqxkVpgHHDpdREcGU4EVKnsmJ99Hi6u_Pus7OhLdau8018WVCAFBjwVEYKTpTxLgRvq2LnowB_KIAUR5_F0Wdx9FmcfcbOw6lTW2v_eUUVk4qxXwbLcf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117131476</pqid></control><display><type>article</type><title>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tang, Gao ; Jiang, Fanghua ; Li, Junfeng</creator><creatorcontrib>Tang, Gao ; Jiang, Fanghua ; Li, Junfeng</creatorcontrib><description>Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2018.2803558</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convexity ; Fuels ; Indirect method ; Lagrange multiplier ; lossless convexification ; low thrust ; Optimal control ; Performance analysis ; pseudospectral method ; Robustness ; successive convex programming (SCP) ; Switches ; Thrust ; Trajectory optimization</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2018-08, Vol.54 (4), p.2053-2066</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</citedby><cites>FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</cites><orcidid>0000-0001-8411-5603 ; 0000-0003-0156-4759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8283683$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Tang, Gao</creatorcontrib><creatorcontrib>Jiang, Fanghua</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><title>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem.</description><subject>Convexity</subject><subject>Fuels</subject><subject>Indirect method</subject><subject>Lagrange multiplier</subject><subject>lossless convexification</subject><subject>low thrust</subject><subject>Optimal control</subject><subject>Performance analysis</subject><subject>pseudospectral method</subject><subject>Robustness</subject><subject>successive convex programming (SCP)</subject><subject>Switches</subject><subject>Thrust</subject><subject>Trajectory optimization</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAUhhujiYj-AONNE6-HPf1ad0kIKgkGE8b1UrsORmDFdkPx11uEeHVy8j7vOcmD0D2QAQDJnvLheD6gBNSAKsKEUBeoB0KkSSYJu0Q9EqMkowKu0U0I67hyxVkPLZ87u0lmu7be6g2euq8kX_kutDj3em1N6_wB_6X1j25r1-BFqJslnjRl7WOM32y7ciXWTYnnnTE2hHpv8cg1e_uN371ber3dxsYtuqr0Jti78-yjxfM4H70m09nLZDScJoaJrE1sCpTolFMmbPkhjaaZqspKEauFIMYyyAAqxkVpgHHDpdREcGU4EVKnsmJ99Hi6u_Pus7OhLdau8018WVCAFBjwVEYKTpTxLgRvq2LnowB_KIAUR5_F0Wdx9FmcfcbOw6lTW2v_eUUVk4qxXwbLcf8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Tang, Gao</creator><creator>Jiang, Fanghua</creator><creator>Li, Junfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8411-5603</orcidid><orcidid>https://orcid.org/0000-0003-0156-4759</orcidid></search><sort><creationdate>20180801</creationdate><title>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</title><author>Tang, Gao ; Jiang, Fanghua ; Li, Junfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convexity</topic><topic>Fuels</topic><topic>Indirect method</topic><topic>Lagrange multiplier</topic><topic>lossless convexification</topic><topic>low thrust</topic><topic>Optimal control</topic><topic>Performance analysis</topic><topic>pseudospectral method</topic><topic>Robustness</topic><topic>successive convex programming (SCP)</topic><topic>Switches</topic><topic>Thrust</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Gao</creatorcontrib><creatorcontrib>Jiang, Fanghua</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Gao</au><au>Jiang, Fanghua</au><au>Li, Junfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>2053</spage><epage>2066</epage><pages>2053-2066</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Although the robustness of indirect methods is enhanced by the homotopic approach and switching detection technique when applied to fuel-optimal low-thrust trajectory optimization, the bottleneck in adjoint initialization still needs further investigation. This paper overcomes this bottleneck by the adjoint mapping between the Lagrange multipliers of direct methods to the adjoint variables. The nonconvex optimization problem deduced from direct methods is converted into a convex one by lossless convexification and successive convex programming. By combining these techniques, a framework is built to effectively solve the fuel-optimal low-thrust trajectory optimization problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2018.2803558</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8411-5603</orcidid><orcidid>https://orcid.org/0000-0003-0156-4759</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2018-08, Vol.54 (4), p.2053-2066 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2018_2803558 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Convexity Fuels Indirect method Lagrange multiplier lossless convexification low thrust Optimal control Performance analysis pseudospectral method Robustness successive convex programming (SCP) Switches Thrust Trajectory optimization |
title | Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel-Optimal%20Low-Thrust%20Trajectory%20Optimization%20Using%20Indirect%20Method%20and%20Successive%20Convex%20Programming&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Tang,%20Gao&rft.date=2018-08-01&rft.volume=54&rft.issue=4&rft.spage=2053&rft.epage=2066&rft.pages=2053-2066&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2018.2803558&rft_dat=%3Cproquest_cross%3E2117131476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e7120a74235edb6ca298fdf80ea550ce31911f345dc134c466a0548c4056a76f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117131476&rft_id=info:pmid/&rft_ieee_id=8283683&rfr_iscdi=true |