Loading…

Vision-Based Pose Estimation for Textureless Space Objects by Contour Points Matching

This paper presents a novel vision-based method to solve the 6-degree-of-freedom pose estimation problem of textureless space objects from a single monocular image. Our approach follows a coarse-to-fine procedure, utilizing only shape and contour information of the input image. To achieve invariance...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2018-10, Vol.54 (5), p.2342-2355
Main Authors: Zhang, Xin, Jiang, Zhiguo, Zhang, Haopeng, Wei, Quanmao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-d77f8731715ab19ef0f3a9d124413c12f1c7a0a1d514b9e7ce8af15570179dba3
cites cdi_FETCH-LOGICAL-c341t-d77f8731715ab19ef0f3a9d124413c12f1c7a0a1d514b9e7ce8af15570179dba3
container_end_page 2355
container_issue 5
container_start_page 2342
container_title IEEE transactions on aerospace and electronic systems
container_volume 54
creator Zhang, Xin
Jiang, Zhiguo
Zhang, Haopeng
Wei, Quanmao
description This paper presents a novel vision-based method to solve the 6-degree-of-freedom pose estimation problem of textureless space objects from a single monocular image. Our approach follows a coarse-to-fine procedure, utilizing only shape and contour information of the input image. To achieve invariance to initialization, we select a series of projection images that are similar to the input image and establish many-to-one 2D-3D correspondences by contour feature matching. Intensive attention is focused on outlier rejection and we introduce an innovative strategy to fully utilize geometric matching information to guide pose calculation. Experiments based on simulated images are carried out, and the results manifest that pose estimation error of our approach is about 1% even in situations with heavy outlier correspondences.
doi_str_mv 10.1109/TAES.2018.2815879
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2018_2815879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8315479</ieee_id><sourcerecordid>2124195201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-d77f8731715ab19ef0f3a9d124413c12f1c7a0a1d514b9e7ce8af15570179dba3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NbDZmc6ylVaFSoa3XkM1OdEvdrUkK9t-bpcXTMDPvOx8PIbfARgBMPazG0-UoZ1CO8hJEKdUZGYAQMlOPjJ-TAUutTOUCLslVCJuUFmXBB2T90YSma7MnE7Cm711AOg2x-TYxVanrPF3hb9x73GIIdLkzFumi2qCNgVYHOuna2O19MjZtqryZaL-a9vOaXDizDXhzikOynk1Xk5dsvnh-nYznmeUFxKyW0pWSgwRhKlDomONG1ZAXBXALuQMrDTNQCygqhdJiaVz_FQOp6srwIbk_zt357mePIepNuqZNK3WepoASCUlSwVFlfReCR6d3Pn3oDxqY7unpnp7u6ekTveS5O3oaRPzXlxxEkbp_Xp1rEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124195201</pqid></control><display><type>article</type><title>Vision-Based Pose Estimation for Textureless Space Objects by Contour Points Matching</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Xin ; Jiang, Zhiguo ; Zhang, Haopeng ; Wei, Quanmao</creator><creatorcontrib>Zhang, Xin ; Jiang, Zhiguo ; Zhang, Haopeng ; Wei, Quanmao</creatorcontrib><description>This paper presents a novel vision-based method to solve the 6-degree-of-freedom pose estimation problem of textureless space objects from a single monocular image. Our approach follows a coarse-to-fine procedure, utilizing only shape and contour information of the input image. To achieve invariance to initialization, we select a series of projection images that are similar to the input image and establish many-to-one 2D-3D correspondences by contour feature matching. Intensive attention is focused on outlier rejection and we introduce an innovative strategy to fully utilize geometric matching information to guide pose calculation. Experiments based on simulated images are carried out, and the results manifest that pose estimation error of our approach is about 1% even in situations with heavy outlier correspondences.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2018.2815879</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Contour feature matching ; Contour matching ; outlier rejection ; Pose estimation ; Solid modeling ; Space vehicles ; Surveillance ; textureless space object ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2018-10, Vol.54 (5), p.2342-2355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-d77f8731715ab19ef0f3a9d124413c12f1c7a0a1d514b9e7ce8af15570179dba3</citedby><cites>FETCH-LOGICAL-c341t-d77f8731715ab19ef0f3a9d124413c12f1c7a0a1d514b9e7ce8af15570179dba3</cites><orcidid>0000-0003-1981-8307 ; 0000-0001-8786-2540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8315479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Zhang, Haopeng</creatorcontrib><creatorcontrib>Wei, Quanmao</creatorcontrib><title>Vision-Based Pose Estimation for Textureless Space Objects by Contour Points Matching</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This paper presents a novel vision-based method to solve the 6-degree-of-freedom pose estimation problem of textureless space objects from a single monocular image. Our approach follows a coarse-to-fine procedure, utilizing only shape and contour information of the input image. To achieve invariance to initialization, we select a series of projection images that are similar to the input image and establish many-to-one 2D-3D correspondences by contour feature matching. Intensive attention is focused on outlier rejection and we introduce an innovative strategy to fully utilize geometric matching information to guide pose calculation. Experiments based on simulated images are carried out, and the results manifest that pose estimation error of our approach is about 1% even in situations with heavy outlier correspondences.</description><subject>Cameras</subject><subject>Contour feature matching</subject><subject>Contour matching</subject><subject>outlier rejection</subject><subject>Pose estimation</subject><subject>Solid modeling</subject><subject>Space vehicles</subject><subject>Surveillance</subject><subject>textureless space object</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NbDZmc6ylVaFSoa3XkM1OdEvdrUkK9t-bpcXTMDPvOx8PIbfARgBMPazG0-UoZ1CO8hJEKdUZGYAQMlOPjJ-TAUutTOUCLslVCJuUFmXBB2T90YSma7MnE7Cm711AOg2x-TYxVanrPF3hb9x73GIIdLkzFumi2qCNgVYHOuna2O19MjZtqryZaL-a9vOaXDizDXhzikOynk1Xk5dsvnh-nYznmeUFxKyW0pWSgwRhKlDomONG1ZAXBXALuQMrDTNQCygqhdJiaVz_FQOp6srwIbk_zt357mePIepNuqZNK3WepoASCUlSwVFlfReCR6d3Pn3oDxqY7unpnp7u6ekTveS5O3oaRPzXlxxEkbp_Xp1rEg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zhang, Xin</creator><creator>Jiang, Zhiguo</creator><creator>Zhang, Haopeng</creator><creator>Wei, Quanmao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1981-8307</orcidid><orcidid>https://orcid.org/0000-0001-8786-2540</orcidid></search><sort><creationdate>20181001</creationdate><title>Vision-Based Pose Estimation for Textureless Space Objects by Contour Points Matching</title><author>Zhang, Xin ; Jiang, Zhiguo ; Zhang, Haopeng ; Wei, Quanmao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-d77f8731715ab19ef0f3a9d124413c12f1c7a0a1d514b9e7ce8af15570179dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cameras</topic><topic>Contour feature matching</topic><topic>Contour matching</topic><topic>outlier rejection</topic><topic>Pose estimation</topic><topic>Solid modeling</topic><topic>Space vehicles</topic><topic>Surveillance</topic><topic>textureless space object</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Zhang, Haopeng</creatorcontrib><creatorcontrib>Wei, Quanmao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin</au><au>Jiang, Zhiguo</au><au>Zhang, Haopeng</au><au>Wei, Quanmao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Based Pose Estimation for Textureless Space Objects by Contour Points Matching</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>54</volume><issue>5</issue><spage>2342</spage><epage>2355</epage><pages>2342-2355</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This paper presents a novel vision-based method to solve the 6-degree-of-freedom pose estimation problem of textureless space objects from a single monocular image. Our approach follows a coarse-to-fine procedure, utilizing only shape and contour information of the input image. To achieve invariance to initialization, we select a series of projection images that are similar to the input image and establish many-to-one 2D-3D correspondences by contour feature matching. Intensive attention is focused on outlier rejection and we introduce an innovative strategy to fully utilize geometric matching information to guide pose calculation. Experiments based on simulated images are carried out, and the results manifest that pose estimation error of our approach is about 1% even in situations with heavy outlier correspondences.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2018.2815879</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1981-8307</orcidid><orcidid>https://orcid.org/0000-0001-8786-2540</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2018-10, Vol.54 (5), p.2342-2355
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2018_2815879
source IEEE Electronic Library (IEL) Journals
subjects Cameras
Contour feature matching
Contour matching
outlier rejection
Pose estimation
Solid modeling
Space vehicles
Surveillance
textureless space object
Three-dimensional displays
Two dimensional displays
title Vision-Based Pose Estimation for Textureless Space Objects by Contour Points Matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Based%20Pose%20Estimation%20for%20Textureless%20Space%20Objects%20by%20Contour%20Points%20Matching&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhang,%20Xin&rft.date=2018-10-01&rft.volume=54&rft.issue=5&rft.spage=2342&rft.epage=2355&rft.pages=2342-2355&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2018.2815879&rft_dat=%3Cproquest_cross%3E2124195201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-d77f8731715ab19ef0f3a9d124413c12f1c7a0a1d514b9e7ce8af15570179dba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2124195201&rft_id=info:pmid/&rft_ieee_id=8315479&rfr_iscdi=true