Loading…

Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories

This article considers a batch solution to the multiobject tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the dat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2024-12, Vol.60 (6), p.7804-7819
Main Authors: Xia, Yuxuan, Garcia-Fernandez, Angel F., Svensson, Lennart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-d63edc9fceb131dc3742631c3a71b80a74948e5e91bc841234d19c7ed987e1d13
container_end_page 7819
container_issue 6
container_start_page 7804
container_title IEEE transactions on aerospace and electronic systems
container_volume 60
creator Xia, Yuxuan
Garcia-Fernandez, Angel F.
Svensson, Lennart
description This article considers a batch solution to the multiobject tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the data association hypotheses. In contrast to online TPMBM implementations, the proposed offline implementations solve a large-scale, multiscan data association problem across the entire time interval of interest, and therefore, they can fully exploit all the measurement information available. Furthermore, by leveraging the efficient hypothesis structure of TPMBM filters, the proposed implementations compare favorably with other MCMC-based multiobject tracking algorithms. Simulation results show that the TPMBM implementation using the Metropolis-Hastings algorithm presents state-of-the-art multiple trajectory estimation performance.
doi_str_mv 10.1109/TAES.2024.3419785
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2024_3419785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10574293</ieee_id><sourcerecordid>10_1109_TAES_2024_3419785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-d63edc9fceb131dc3742631c3a71b80a74948e5e91bc841234d19c7ed987e1d13</originalsourceid><addsrcrecordid>eNpNkMtKxDAYhYMoWEcfQHCRF-iYv0mbZFnqeIEOLmZcl0z6FzPWRpIo-PZ2mFm4Ohw4F_gIuQW2BGD6fluvNsuCFWLJBWipyjOSQVnKXFeMn5OMMVC5Lkq4JFcx7mcrlOAZadcmfPgf2rwbN9G1nxLSxoTR0_X3mFy0ZqIPJhlax-itM8n5iQ4-0A2mSP1At8Hs0SYfHMZrcjGYMeLNSRfk7XG1bZ7z9vXppanb3M6vKe8rjr3Vg8UdcOgtl6KoOFhuJOwUM1JoobBEDTurBBRc9KCtxF4ridADXxA47trgYww4dF_BfZrw2wHrDji6A47ugKM74Zg7d8eOQ8R_-XI-15z_AUu8W-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xia, Yuxuan ; Garcia-Fernandez, Angel F. ; Svensson, Lennart</creator><creatorcontrib>Xia, Yuxuan ; Garcia-Fernandez, Angel F. ; Svensson, Lennart</creatorcontrib><description>This article considers a batch solution to the multiobject tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the data association hypotheses. In contrast to online TPMBM implementations, the proposed offline implementations solve a large-scale, multiscan data association problem across the entire time interval of interest, and therefore, they can fully exploit all the measurement information available. Furthermore, by leveraging the efficient hypothesis structure of TPMBM filters, the proposed implementations compare favorably with other MCMC-based multiobject tracking algorithms. Simulation results show that the TPMBM implementation using the Metropolis-Hastings algorithm presents state-of-the-art multiple trajectory estimation performance.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3419785</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Current measurement ; data association ; Estimation ; Markov chain Monte Carlo (MCMC) ; Monte Carlo methods ; Multiple object tracking ; Proposals ; sets of trajectories ; smoothing ; Time measurement ; Trajectory</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.7804-7819</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-d63edc9fceb131dc3742631c3a71b80a74948e5e91bc841234d19c7ed987e1d13</cites><orcidid>0000-0003-0206-9186 ; 0000-0002-2788-7911 ; 0000-0002-6471-8455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10574293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids></links><search><creatorcontrib>Xia, Yuxuan</creatorcontrib><creatorcontrib>Garcia-Fernandez, Angel F.</creatorcontrib><creatorcontrib>Svensson, Lennart</creatorcontrib><title>Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This article considers a batch solution to the multiobject tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the data association hypotheses. In contrast to online TPMBM implementations, the proposed offline implementations solve a large-scale, multiscan data association problem across the entire time interval of interest, and therefore, they can fully exploit all the measurement information available. Furthermore, by leveraging the efficient hypothesis structure of TPMBM filters, the proposed implementations compare favorably with other MCMC-based multiobject tracking algorithms. Simulation results show that the TPMBM implementation using the Metropolis-Hastings algorithm presents state-of-the-art multiple trajectory estimation performance.</description><subject>Current measurement</subject><subject>data association</subject><subject>Estimation</subject><subject>Markov chain Monte Carlo (MCMC)</subject><subject>Monte Carlo methods</subject><subject>Multiple object tracking</subject><subject>Proposals</subject><subject>sets of trajectories</subject><subject>smoothing</subject><subject>Time measurement</subject><subject>Trajectory</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKxDAYhYMoWEcfQHCRF-iYv0mbZFnqeIEOLmZcl0z6FzPWRpIo-PZ2mFm4Ohw4F_gIuQW2BGD6fluvNsuCFWLJBWipyjOSQVnKXFeMn5OMMVC5Lkq4JFcx7mcrlOAZadcmfPgf2rwbN9G1nxLSxoTR0_X3mFy0ZqIPJhlax-itM8n5iQ4-0A2mSP1At8Hs0SYfHMZrcjGYMeLNSRfk7XG1bZ7z9vXppanb3M6vKe8rjr3Vg8UdcOgtl6KoOFhuJOwUM1JoobBEDTurBBRc9KCtxF4ridADXxA47trgYww4dF_BfZrw2wHrDji6A47ugKM74Zg7d8eOQ8R_-XI-15z_AUu8W-0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Xia, Yuxuan</creator><creator>Garcia-Fernandez, Angel F.</creator><creator>Svensson, Lennart</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0206-9186</orcidid><orcidid>https://orcid.org/0000-0002-2788-7911</orcidid><orcidid>https://orcid.org/0000-0002-6471-8455</orcidid></search><sort><creationdate>202412</creationdate><title>Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories</title><author>Xia, Yuxuan ; Garcia-Fernandez, Angel F. ; Svensson, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-d63edc9fceb131dc3742631c3a71b80a74948e5e91bc841234d19c7ed987e1d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Current measurement</topic><topic>data association</topic><topic>Estimation</topic><topic>Markov chain Monte Carlo (MCMC)</topic><topic>Monte Carlo methods</topic><topic>Multiple object tracking</topic><topic>Proposals</topic><topic>sets of trajectories</topic><topic>smoothing</topic><topic>Time measurement</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yuxuan</creatorcontrib><creatorcontrib>Garcia-Fernandez, Angel F.</creatorcontrib><creatorcontrib>Svensson, Lennart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yuxuan</au><au>Garcia-Fernandez, Angel F.</au><au>Svensson, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-12</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><spage>7804</spage><epage>7819</epage><pages>7804-7819</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This article considers a batch solution to the multiobject tracking problem based on sets of trajectories. Specifically, we present two offline implementations of the trajectory Poisson multi-Bernoulli mixture (TPMBM) filter for batch data based on Markov chain Monte Carlo (MCMC) sampling of the data association hypotheses. In contrast to online TPMBM implementations, the proposed offline implementations solve a large-scale, multiscan data association problem across the entire time interval of interest, and therefore, they can fully exploit all the measurement information available. Furthermore, by leveraging the efficient hypothesis structure of TPMBM filters, the proposed implementations compare favorably with other MCMC-based multiobject tracking algorithms. Simulation results show that the TPMBM implementation using the Metropolis-Hastings algorithm presents state-of-the-art multiple trajectory estimation performance.</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3419785</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0206-9186</orcidid><orcidid>https://orcid.org/0000-0002-2788-7911</orcidid><orcidid>https://orcid.org/0000-0002-6471-8455</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.7804-7819
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2024_3419785
source IEEE Electronic Library (IEL) Journals
subjects Current measurement
data association
Estimation
Markov chain Monte Carlo (MCMC)
Monte Carlo methods
Multiple object tracking
Proposals
sets of trajectories
smoothing
Time measurement
Trajectory
title Markov Chain Monte Carlo Multiscan Data Association for Sets of Trajectories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20Chain%20Monte%20Carlo%20Multiscan%20Data%20Association%20for%20Sets%20of%20Trajectories&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Xia,%20Yuxuan&rft.date=2024-12&rft.volume=60&rft.issue=6&rft.spage=7804&rft.epage=7819&rft.pages=7804-7819&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3419785&rft_dat=%3Ccrossref_ieee_%3E10_1109_TAES_2024_3419785%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-d63edc9fceb131dc3742631c3a71b80a74948e5e91bc841234d19c7ed987e1d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10574293&rfr_iscdi=true