Loading…
Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses
Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collec...
Saved in:
Published in: | IEEE transactions on affective computing 2022-04, Vol.13 (2), p.628-639 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623 |
container_end_page | 639 |
container_issue | 2 |
container_start_page | 628 |
container_title | IEEE transactions on affective computing |
container_volume | 13 |
creator | Okada, Takumu Okamoto, Shogo Yamada, Yoji |
description | Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model. |
doi_str_mv | 10.1109/TAFFC.2019.2942931 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAFFC_2019_2942931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8846069</ieee_id><sourcerecordid>2672102621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOHR_QG8CXnfmo00b70bdVJgoMq_jWZNIR9fUpB3039u6oZ6bczi8H_AgdEXJjFIib9fz5TKfMULljMmYSU5P0ITKWEacxMnpv_scTUPYkmE454KlE_Qxt9YUbbk3-L6vYVcW4Q7n0AWoyrbHz06bqqw_sbN4bXaN81BVPV7sXbUf36_GF6ZpO6gw1Br_hb2Z0Lg6mHCJzixUwUyP-wK9Lxfr_DFavTw85fNVVHBB2yi2CdEbiFlGeUogSQy1xYZnAKCFZVIA05pBRoqUaRoTLbMsFlonQFKQgvELdHPIbbz76kxo1dZ1vh4qFRMpo4QJRgcVO6gK70LwxqrGlzvwvaJEjTDVD0w1wlRHmIPp-mAqjTG_hrGfCMm_ASS9cME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672102621</pqid></control><display><type>article</type><title>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Okada, Takumu ; Okamoto, Shogo ; Yamada, Yoji</creator><creatorcontrib>Okada, Takumu ; Okamoto, Shogo ; Yamada, Yoji</creatorcontrib><description>Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2019.2942931</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Brain modeling ; Causality ; Causality modeling ; Data models ; Granger causality ; Mathematical model ; Modelling ; Reactive power ; Regression models ; Semantics ; Series (mathematics) ; Stimuli ; temporal dominance of sensations ; Time series analysis ; VAR model</subject><ispartof>IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.628-639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</citedby><cites>FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</cites><orcidid>0000-0003-2116-7734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8846069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Okada, Takumu</creatorcontrib><creatorcontrib>Okamoto, Shogo</creatorcontrib><creatorcontrib>Yamada, Yoji</creatorcontrib><title>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model.</description><subject>Brain modeling</subject><subject>Causality</subject><subject>Causality modeling</subject><subject>Data models</subject><subject>Granger causality</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>Reactive power</subject><subject>Regression models</subject><subject>Semantics</subject><subject>Series (mathematics)</subject><subject>Stimuli</subject><subject>temporal dominance of sensations</subject><subject>Time series analysis</subject><subject>VAR model</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOHR_QG8CXnfmo00b70bdVJgoMq_jWZNIR9fUpB3039u6oZ6bczi8H_AgdEXJjFIib9fz5TKfMULljMmYSU5P0ITKWEacxMnpv_scTUPYkmE454KlE_Qxt9YUbbk3-L6vYVcW4Q7n0AWoyrbHz06bqqw_sbN4bXaN81BVPV7sXbUf36_GF6ZpO6gw1Br_hb2Z0Lg6mHCJzixUwUyP-wK9Lxfr_DFavTw85fNVVHBB2yi2CdEbiFlGeUogSQy1xYZnAKCFZVIA05pBRoqUaRoTLbMsFlonQFKQgvELdHPIbbz76kxo1dZ1vh4qFRMpo4QJRgcVO6gK70LwxqrGlzvwvaJEjTDVD0w1wlRHmIPp-mAqjTG_hrGfCMm_ASS9cME</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Okada, Takumu</creator><creator>Okamoto, Shogo</creator><creator>Yamada, Yoji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2116-7734</orcidid></search><sort><creationdate>20220401</creationdate><title>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</title><author>Okada, Takumu ; Okamoto, Shogo ; Yamada, Yoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain modeling</topic><topic>Causality</topic><topic>Causality modeling</topic><topic>Data models</topic><topic>Granger causality</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>Reactive power</topic><topic>Regression models</topic><topic>Semantics</topic><topic>Series (mathematics)</topic><topic>Stimuli</topic><topic>temporal dominance of sensations</topic><topic>Time series analysis</topic><topic>VAR model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Takumu</creatorcontrib><creatorcontrib>Okamoto, Shogo</creatorcontrib><creatorcontrib>Yamada, Yoji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Takumu</au><au>Okamoto, Shogo</au><au>Yamada, Yoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>628</spage><epage>639</epage><pages>628-639</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2019.2942931</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2116-7734</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.628-639 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAFFC_2019_2942931 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Brain modeling Causality Causality modeling Data models Granger causality Mathematical model Modelling Reactive power Regression models Semantics Series (mathematics) Stimuli temporal dominance of sensations Time series analysis VAR model |
title | Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affective%20Dynamics:%20Causality%20Modeling%20of%20Temporally%20Evolving%20Perceptual%20and%20Affective%20Responses&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Okada,%20Takumu&rft.date=2022-04-01&rft.volume=13&rft.issue=2&rft.spage=628&rft.epage=639&rft.pages=628-639&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2019.2942931&rft_dat=%3Cproquest_cross%3E2672102621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672102621&rft_id=info:pmid/&rft_ieee_id=8846069&rfr_iscdi=true |