Loading…

Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses

Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on affective computing 2022-04, Vol.13 (2), p.628-639
Main Authors: Okada, Takumu, Okamoto, Shogo, Yamada, Yoji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623
cites cdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623
container_end_page 639
container_issue 2
container_start_page 628
container_title IEEE transactions on affective computing
container_volume 13
creator Okada, Takumu
Okamoto, Shogo
Yamada, Yoji
description Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model.
doi_str_mv 10.1109/TAFFC.2019.2942931
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAFFC_2019_2942931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8846069</ieee_id><sourcerecordid>2672102621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOHR_QG8CXnfmo00b70bdVJgoMq_jWZNIR9fUpB3039u6oZ6bczi8H_AgdEXJjFIib9fz5TKfMULljMmYSU5P0ITKWEacxMnpv_scTUPYkmE454KlE_Qxt9YUbbk3-L6vYVcW4Q7n0AWoyrbHz06bqqw_sbN4bXaN81BVPV7sXbUf36_GF6ZpO6gw1Br_hb2Z0Lg6mHCJzixUwUyP-wK9Lxfr_DFavTw85fNVVHBB2yi2CdEbiFlGeUogSQy1xYZnAKCFZVIA05pBRoqUaRoTLbMsFlonQFKQgvELdHPIbbz76kxo1dZ1vh4qFRMpo4QJRgcVO6gK70LwxqrGlzvwvaJEjTDVD0w1wlRHmIPp-mAqjTG_hrGfCMm_ASS9cME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672102621</pqid></control><display><type>article</type><title>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Okada, Takumu ; Okamoto, Shogo ; Yamada, Yoji</creator><creatorcontrib>Okada, Takumu ; Okamoto, Shogo ; Yamada, Yoji</creatorcontrib><description>Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2019.2942931</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Brain modeling ; Causality ; Causality modeling ; Data models ; Granger causality ; Mathematical model ; Modelling ; Reactive power ; Regression models ; Semantics ; Series (mathematics) ; Stimuli ; temporal dominance of sensations ; Time series analysis ; VAR model</subject><ispartof>IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.628-639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</citedby><cites>FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</cites><orcidid>0000-0003-2116-7734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8846069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Okada, Takumu</creatorcontrib><creatorcontrib>Okamoto, Shogo</creatorcontrib><creatorcontrib>Yamada, Yoji</creatorcontrib><title>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model.</description><subject>Brain modeling</subject><subject>Causality</subject><subject>Causality modeling</subject><subject>Data models</subject><subject>Granger causality</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>Reactive power</subject><subject>Regression models</subject><subject>Semantics</subject><subject>Series (mathematics)</subject><subject>Stimuli</subject><subject>temporal dominance of sensations</subject><subject>Time series analysis</subject><subject>VAR model</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOHR_QG8CXnfmo00b70bdVJgoMq_jWZNIR9fUpB3039u6oZ6bczi8H_AgdEXJjFIib9fz5TKfMULljMmYSU5P0ITKWEacxMnpv_scTUPYkmE454KlE_Qxt9YUbbk3-L6vYVcW4Q7n0AWoyrbHz06bqqw_sbN4bXaN81BVPV7sXbUf36_GF6ZpO6gw1Br_hb2Z0Lg6mHCJzixUwUyP-wK9Lxfr_DFavTw85fNVVHBB2yi2CdEbiFlGeUogSQy1xYZnAKCFZVIA05pBRoqUaRoTLbMsFlonQFKQgvELdHPIbbz76kxo1dZ1vh4qFRMpo4QJRgcVO6gK70LwxqrGlzvwvaJEjTDVD0w1wlRHmIPp-mAqjTG_hrGfCMm_ASS9cME</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Okada, Takumu</creator><creator>Okamoto, Shogo</creator><creator>Yamada, Yoji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2116-7734</orcidid></search><sort><creationdate>20220401</creationdate><title>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</title><author>Okada, Takumu ; Okamoto, Shogo ; Yamada, Yoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain modeling</topic><topic>Causality</topic><topic>Causality modeling</topic><topic>Data models</topic><topic>Granger causality</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>Reactive power</topic><topic>Regression models</topic><topic>Semantics</topic><topic>Series (mathematics)</topic><topic>Stimuli</topic><topic>temporal dominance of sensations</topic><topic>Time series analysis</topic><topic>VAR model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Takumu</creatorcontrib><creatorcontrib>Okamoto, Shogo</creatorcontrib><creatorcontrib>Yamada, Yoji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Takumu</au><au>Okamoto, Shogo</au><au>Yamada, Yoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>628</spage><epage>639</epage><pages>628-639</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Human perceptual and affective responses change dynamically when stimuli are experienced. In this study, we developed a method for modeling the causal structures of affective dynamics using time-series data. Using the temporal dominance of sensations method, perceptual and affective data were collected from individuals eating strawberries, and the resulting time-series data were mathematically represented using a vector auto-regression model. Multihierarchical and multidimensional causality structures that explain the temporal evolution of perceptual and affective responses were then established based on Granger causality and the information criterion. The established model suggests how affective and preferential responses are triggered following exposure to stimuli. We also assessed the quantitative and semantic validity of the model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2019.2942931</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2116-7734</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2022-04, Vol.13 (2), p.628-639
issn 1949-3045
1949-3045
language eng
recordid cdi_crossref_primary_10_1109_TAFFC_2019_2942931
source IEEE Electronic Library (IEL) Journals
subjects Brain modeling
Causality
Causality modeling
Data models
Granger causality
Mathematical model
Modelling
Reactive power
Regression models
Semantics
Series (mathematics)
Stimuli
temporal dominance of sensations
Time series analysis
VAR model
title Affective Dynamics: Causality Modeling of Temporally Evolving Perceptual and Affective Responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affective%20Dynamics:%20Causality%20Modeling%20of%20Temporally%20Evolving%20Perceptual%20and%20Affective%20Responses&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Okada,%20Takumu&rft.date=2022-04-01&rft.volume=13&rft.issue=2&rft.spage=628&rft.epage=639&rft.pages=628-639&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2019.2942931&rft_dat=%3Cproquest_cross%3E2672102621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-4f50dba4281370a55e1fcb38aaad6f296a2dd2a80c72d140d98846dd5a07a9623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672102621&rft_id=info:pmid/&rft_ieee_id=8846069&rfr_iscdi=true