Loading…

Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions

This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2015-09, Vol.63 (9), p.3994-4002
Main Authors: Chen, Xinlei, Gu, Changqing, Ding, Ji, Li, Zhuo, Niu, Zhenyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153
cites cdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153
container_end_page 4002
container_issue 9
container_start_page 3994
container_title IEEE transactions on antennas and propagation
container_volume 63
creator Chen, Xinlei
Gu, Changqing
Ding, Ji
Li, Zhuo
Niu, Zhenyi
description This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions.
doi_str_mv 10.1109/TAP.2015.2447033
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2015_2447033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7128339</ieee_id><sourcerecordid>10_1109_TAP_2015_2447033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKfvgi_5Ap352zSPtbgpTPRhovhSrmniIt1akmzot7dlw5dzOXDO5fBD6JqSGaVE367KlxkjVM6YEIpwfoImVMoiY4zRUzQhhBaZZvn7ObqI8XuwohBigj6edm3yrd3bFs8hJlw20Ce_t7gKXYxZ2feh-_EbSL7b4rL96oJP6w1-GxRXawhgkg0-Jm_wHUQf8Xy3NWM4XqIzB220V8c7Ra_z-1X1kC2fF49VucwMy3nKBJXgNHegLShFGgeMOpYrI1RBTGO0bD5zzSFvGlcIq3JFlbIglXKGAJV8isjhrxkXB-vqPgyDw29NST2yqQc29cimPrIZKjeHirfW_scVZQXnmv8Bk39h7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</title><source>IEEE Xplore (Online service)</source><creator>Chen, Xinlei ; Gu, Changqing ; Ding, Ji ; Li, Zhuo ; Niu, Zhenyi</creator><creatorcontrib>Chen, Xinlei ; Gu, Changqing ; Ding, Ji ; Li, Zhuo ; Niu, Zhenyi</creatorcontrib><description>This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2447033</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; characteristic basis function method (CBFM) ; Complexity theory ; Impedance ; Matrix decomposition ; Method of moments ; Method of moments (MoM) ; multilevel fast adaptive cross-approximation (MLFACA)</subject><ispartof>IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3994-4002</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</citedby><cites>FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7128339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Xinlei</creatorcontrib><creatorcontrib>Gu, Changqing</creatorcontrib><creatorcontrib>Ding, Ji</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Niu, Zhenyi</creatorcontrib><title>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>characteristic basis function method (CBFM)</subject><subject>Complexity theory</subject><subject>Impedance</subject><subject>Matrix decomposition</subject><subject>Method of moments</subject><subject>Method of moments (MoM)</subject><subject>multilevel fast adaptive cross-approximation (MLFACA)</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKfvgi_5Ap352zSPtbgpTPRhovhSrmniIt1akmzot7dlw5dzOXDO5fBD6JqSGaVE367KlxkjVM6YEIpwfoImVMoiY4zRUzQhhBaZZvn7ObqI8XuwohBigj6edm3yrd3bFs8hJlw20Ce_t7gKXYxZ2feh-_EbSL7b4rL96oJP6w1-GxRXawhgkg0-Jm_wHUQf8Xy3NWM4XqIzB220V8c7Ra_z-1X1kC2fF49VucwMy3nKBJXgNHegLShFGgeMOpYrI1RBTGO0bD5zzSFvGlcIq3JFlbIglXKGAJV8isjhrxkXB-vqPgyDw29NST2yqQc29cimPrIZKjeHirfW_scVZQXnmv8Bk39h7Q</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Chen, Xinlei</creator><creator>Gu, Changqing</creator><creator>Ding, Ji</creator><creator>Li, Zhuo</creator><creator>Niu, Zhenyi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</title><author>Chen, Xinlei ; Gu, Changqing ; Ding, Ji ; Li, Zhuo ; Niu, Zhenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>characteristic basis function method (CBFM)</topic><topic>Complexity theory</topic><topic>Impedance</topic><topic>Matrix decomposition</topic><topic>Method of moments</topic><topic>Method of moments (MoM)</topic><topic>multilevel fast adaptive cross-approximation (MLFACA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xinlei</creatorcontrib><creatorcontrib>Gu, Changqing</creatorcontrib><creatorcontrib>Ding, Ji</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Niu, Zhenyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xinlei</au><au>Gu, Changqing</au><au>Ding, Ji</au><au>Li, Zhuo</au><au>Niu, Zhenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-09</date><risdate>2015</risdate><volume>63</volume><issue>9</issue><spage>3994</spage><epage>4002</epage><pages>3994-4002</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2015.2447033</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3994-4002
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2015_2447033
source IEEE Xplore (Online service)
subjects Approximation algorithms
Approximation methods
characteristic basis function method (CBFM)
Complexity theory
Impedance
Matrix decomposition
Method of moments
Method of moments (MoM)
multilevel fast adaptive cross-approximation (MLFACA)
title Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20Fast%20Adaptive%20Cross-Approximation%20Algorithm%20With%20Characteristic%20Basis%20Functions&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Chen,%20Xinlei&rft.date=2015-09&rft.volume=63&rft.issue=9&rft.spage=3994&rft.epage=4002&rft.pages=3994-4002&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2447033&rft_dat=%3Ccrossref_ieee_%3E10_1109_TAP_2015_2447033%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7128339&rfr_iscdi=true