Loading…
Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions
This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2015-09, Vol.63 (9), p.3994-4002 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153 |
container_end_page | 4002 |
container_issue | 9 |
container_start_page | 3994 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 63 |
creator | Chen, Xinlei Gu, Changqing Ding, Ji Li, Zhuo Niu, Zhenyi |
description | This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions. |
doi_str_mv | 10.1109/TAP.2015.2447033 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2015_2447033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7128339</ieee_id><sourcerecordid>10_1109_TAP_2015_2447033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKfvgi_5Ap352zSPtbgpTPRhovhSrmniIt1akmzot7dlw5dzOXDO5fBD6JqSGaVE367KlxkjVM6YEIpwfoImVMoiY4zRUzQhhBaZZvn7ObqI8XuwohBigj6edm3yrd3bFs8hJlw20Ce_t7gKXYxZ2feh-_EbSL7b4rL96oJP6w1-GxRXawhgkg0-Jm_wHUQf8Xy3NWM4XqIzB220V8c7Ra_z-1X1kC2fF49VucwMy3nKBJXgNHegLShFGgeMOpYrI1RBTGO0bD5zzSFvGlcIq3JFlbIglXKGAJV8isjhrxkXB-vqPgyDw29NST2yqQc29cimPrIZKjeHirfW_scVZQXnmv8Bk39h7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</title><source>IEEE Xplore (Online service)</source><creator>Chen, Xinlei ; Gu, Changqing ; Ding, Ji ; Li, Zhuo ; Niu, Zhenyi</creator><creatorcontrib>Chen, Xinlei ; Gu, Changqing ; Ding, Ji ; Li, Zhuo ; Niu, Zhenyi</creatorcontrib><description>This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2447033</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; characteristic basis function method (CBFM) ; Complexity theory ; Impedance ; Matrix decomposition ; Method of moments ; Method of moments (MoM) ; multilevel fast adaptive cross-approximation (MLFACA)</subject><ispartof>IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3994-4002</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</citedby><cites>FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7128339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Xinlei</creatorcontrib><creatorcontrib>Gu, Changqing</creatorcontrib><creatorcontrib>Ding, Ji</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Niu, Zhenyi</creatorcontrib><title>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>characteristic basis function method (CBFM)</subject><subject>Complexity theory</subject><subject>Impedance</subject><subject>Matrix decomposition</subject><subject>Method of moments</subject><subject>Method of moments (MoM)</subject><subject>multilevel fast adaptive cross-approximation (MLFACA)</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKfvgi_5Ap352zSPtbgpTPRhovhSrmniIt1akmzot7dlw5dzOXDO5fBD6JqSGaVE367KlxkjVM6YEIpwfoImVMoiY4zRUzQhhBaZZvn7ObqI8XuwohBigj6edm3yrd3bFs8hJlw20Ce_t7gKXYxZ2feh-_EbSL7b4rL96oJP6w1-GxRXawhgkg0-Jm_wHUQf8Xy3NWM4XqIzB220V8c7Ra_z-1X1kC2fF49VucwMy3nKBJXgNHegLShFGgeMOpYrI1RBTGO0bD5zzSFvGlcIq3JFlbIglXKGAJV8isjhrxkXB-vqPgyDw29NST2yqQc29cimPrIZKjeHirfW_scVZQXnmv8Bk39h7Q</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Chen, Xinlei</creator><creator>Gu, Changqing</creator><creator>Ding, Ji</creator><creator>Li, Zhuo</creator><creator>Niu, Zhenyi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</title><author>Chen, Xinlei ; Gu, Changqing ; Ding, Ji ; Li, Zhuo ; Niu, Zhenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>characteristic basis function method (CBFM)</topic><topic>Complexity theory</topic><topic>Impedance</topic><topic>Matrix decomposition</topic><topic>Method of moments</topic><topic>Method of moments (MoM)</topic><topic>multilevel fast adaptive cross-approximation (MLFACA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xinlei</creatorcontrib><creatorcontrib>Gu, Changqing</creatorcontrib><creatorcontrib>Ding, Ji</creatorcontrib><creatorcontrib>Li, Zhuo</creatorcontrib><creatorcontrib>Niu, Zhenyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xinlei</au><au>Gu, Changqing</au><au>Ding, Ji</au><au>Li, Zhuo</au><au>Niu, Zhenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-09</date><risdate>2015</risdate><volume>63</volume><issue>9</issue><spage>3994</spage><epage>4002</epage><pages>3994-4002</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper presents a multilevel fast adaptive crossapproximation (MLFACA) algorithm for accelerated iterative solution of the method of moments (MoM) matrix equation for electrically large targets. The MLFACA compresses the impedance submatrices between well-separated blocks into products of sparse matrices, constructed with the aid of the fast adaptive cross-sampling (FACS) scheme and the butterfly algorithm. As a result, the MLFACA can reduce both the computational time and the storage of the MoM to O(N log2N), where N is the number of the Rao-Wilton-Glisson (RWG) basis functions in the analyzed target. Meanwhile, the MLFACA maintains the adaptive and kernel-independent properties. Furthermore, the characteristic basis function method (CBFM) is employed to decrease the size of the outer matrices of the MLFACA to further reduce the storage and iteration time. Numerical results are presented to demonstrate the advantages of the proposed method, including a successful solution of a scattering problem involving 10 861 668 RWG basis functions.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2015.2447033</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2015-09, Vol.63 (9), p.3994-4002 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2015_2447033 |
source | IEEE Xplore (Online service) |
subjects | Approximation algorithms Approximation methods characteristic basis function method (CBFM) Complexity theory Impedance Matrix decomposition Method of moments Method of moments (MoM) multilevel fast adaptive cross-approximation (MLFACA) |
title | Multilevel Fast Adaptive Cross-Approximation Algorithm With Characteristic Basis Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20Fast%20Adaptive%20Cross-Approximation%20Algorithm%20With%20Characteristic%20Basis%20Functions&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Chen,%20Xinlei&rft.date=2015-09&rft.volume=63&rft.issue=9&rft.spage=3994&rft.epage=4002&rft.pages=3994-4002&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2447033&rft_dat=%3Ccrossref_ieee_%3E10_1109_TAP_2015_2447033%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-415af93fa9ea770dfa21f267c4780cdc95db693a6ddf84e767177ea577fc0a153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7128339&rfr_iscdi=true |