Loading…

3-D Mechanically Tunable Square Slot FSS

We introduce an innovative 3-D mechanically tunable frequency selective surface (FSS), which is inspired by the classical flat square slot FSS. The proposal improves the performance of classical 2-D FSS designs, and it also represents a novel method of achieving mechanical frequency tuning, despite...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2017-01, Vol.65 (1), p.242-250
Main Authors: Ferreira, David, Cuinas, Inigo, Caldeirinha, Rafael F. S., Fernandes, Telmo R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce an innovative 3-D mechanically tunable frequency selective surface (FSS), which is inspired by the classical flat square slot FSS. The proposal improves the performance of classical 2-D FSS designs, and it also represents a novel method of achieving mechanical frequency tuning, despite other 3-D designs that consist of a collection of stacked 3-D layers exist. In our proposal, the rotation of an inner element provides tuning capability to the squared cell structure, consisting of metallic grids with a movable inner element. An aluminum prototype was built, which can be tuned from 2.4 to 4 GHz, and also compared its measured performance and numerical simulations. Some characteristics of the proposed structure are the rejection level at main polarization, up to 20 dB, and the maximum frequency sweep of approximately 50% of the fundamental frequency. The prototype showed a stable frequency response for angles of incidence up to 45°. Since results are in good agreement with simulations, we provide parametric equations to design 3-D structures at desired frequencies.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2016.2631131