Loading…
A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application
This paper presents a novel frequency beam scanning slotted leaky-wave magnetoelectric (ME) dipole antenna array for the fifth generation (5G) application. The proposed antenna, which has eighteen elements of slots and electric dipoles, is built on a two-layer printed circuit board. In the lower lay...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2017-12, Vol.65 (12), p.6395-6402 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-99d11b05c1bf496b9c3410df7907eed43a26f8a3fbc95a1a22aeed34eebc9a683 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-99d11b05c1bf496b9c3410df7907eed43a26f8a3fbc95a1a22aeed34eebc9a683 |
container_end_page | 6402 |
container_issue | 12 |
container_start_page | 6395 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 65 |
creator | Mak, Ka-Ming So, Kwok-Kan Lai, Hau-Wah Luk, Kwai-Man |
description | This paper presents a novel frequency beam scanning slotted leaky-wave magnetoelectric (ME) dipole antenna array for the fifth generation (5G) application. The proposed antenna, which has eighteen elements of slots and electric dipoles, is built on a two-layer printed circuit board. In the lower layer, it is a conventional slotted substrate integrated waveguide (SIW) leaky-wave antenna (LWA). In the upper layer, electric dipoles are attached to the design. As for each element unit, the magnetic dipole is realized by each lower-layer aperture, while the electric dipole is realized by each pair of patches in the upper layer. The design concept is that two modes are excited together in orthogonal directions to realize the ME dipole. By introducing electric dipoles to the conventional slotted LWA, the antenna exhibits less gain variation over a wide bandwidth. The SIW leaky-wave ME dipole antenna array is designed and fabricated to operate at the 28-GHz band. It operates with wide impedance bandwidth and a peak gain of 16.55 dBi with less than 3-dB gain variation throughout the frequency range from 27 to 32 GHz. |
doi_str_mv | 10.1109/TAP.2017.2722868 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2017_2722868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7967723</ieee_id><sourcerecordid>1970711727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-99d11b05c1bf496b9c3410df7907eed43a26f8a3fbc95a1a22aeed34eebc9a683</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvBc2de0jbNsUyn4oYeJnoLafYimV1T007Yf2_GhqfH-973vQ9-hFwDnQBQebes3iaMgpgwwVhZlCdkBHlepowxOCUjSqFMJSs-z8lF36_jmpVZNiIvVbLQXy0OHhs0Q3AmuXedbzCZo_7epR_6F5OqHbBtdWJ9SBauadwGBwzHW9c1zujB-faSnFnd9Hh1nGPyPntYTp_S-evj87Sap4ZJGFIpVwA1zQ3UNpNFLQ3PgK6skFQgrjKuWWFLzW1tZK5BM6ajzDPEKOii5GNye_jbBf-zxX5Qa78NbaxUIAUVAIKJ6KIHlwm-7wNa1QW30WGngKo9MhWRqT0ydUQWIzeHiEPEf7uQhRCM8z8OT2ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970711727</pqid></control><display><type>article</type><title>A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application</title><source>IEEE Xplore (Online service)</source><creator>Mak, Ka-Ming ; So, Kwok-Kan ; Lai, Hau-Wah ; Luk, Kwai-Man</creator><creatorcontrib>Mak, Ka-Ming ; So, Kwok-Kan ; Lai, Hau-Wah ; Luk, Kwai-Man</creatorcontrib><description>This paper presents a novel frequency beam scanning slotted leaky-wave magnetoelectric (ME) dipole antenna array for the fifth generation (5G) application. The proposed antenna, which has eighteen elements of slots and electric dipoles, is built on a two-layer printed circuit board. In the lower layer, it is a conventional slotted substrate integrated waveguide (SIW) leaky-wave antenna (LWA). In the upper layer, electric dipoles are attached to the design. As for each element unit, the magnetic dipole is realized by each lower-layer aperture, while the electric dipole is realized by each pair of patches in the upper layer. The design concept is that two modes are excited together in orthogonal directions to realize the ME dipole. By introducing electric dipoles to the conventional slotted LWA, the antenna exhibits less gain variation over a wide bandwidth. The SIW leaky-wave ME dipole antenna array is designed and fabricated to operate at the 28-GHz band. It operates with wide impedance bandwidth and a peak gain of 16.55 dBi with less than 3-dB gain variation throughout the frequency range from 27 to 32 GHz.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2017.2722868</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antennas ; Bandwidths ; Dipole antennas ; Electric dipoles ; Gain ; Leaky-wave antenna (LWA) ; Magnetic dipoles ; magnetoelectric (ME) dipole ; Magnetoelectric effects ; Reflection coefficient ; Slot antennas ; substrate integrated waveguide (SIW) ; Substrates</subject><ispartof>IEEE transactions on antennas and propagation, 2017-12, Vol.65 (12), p.6395-6402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-99d11b05c1bf496b9c3410df7907eed43a26f8a3fbc95a1a22aeed34eebc9a683</citedby><cites>FETCH-LOGICAL-c291t-99d11b05c1bf496b9c3410df7907eed43a26f8a3fbc95a1a22aeed34eebc9a683</cites><orcidid>0000-0002-5993-2991 ; 0000-0003-1091-6226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7967723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mak, Ka-Ming</creatorcontrib><creatorcontrib>So, Kwok-Kan</creatorcontrib><creatorcontrib>Lai, Hau-Wah</creatorcontrib><creatorcontrib>Luk, Kwai-Man</creatorcontrib><title>A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper presents a novel frequency beam scanning slotted leaky-wave magnetoelectric (ME) dipole antenna array for the fifth generation (5G) application. The proposed antenna, which has eighteen elements of slots and electric dipoles, is built on a two-layer printed circuit board. In the lower layer, it is a conventional slotted substrate integrated waveguide (SIW) leaky-wave antenna (LWA). In the upper layer, electric dipoles are attached to the design. As for each element unit, the magnetic dipole is realized by each lower-layer aperture, while the electric dipole is realized by each pair of patches in the upper layer. The design concept is that two modes are excited together in orthogonal directions to realize the ME dipole. By introducing electric dipoles to the conventional slotted LWA, the antenna exhibits less gain variation over a wide bandwidth. The SIW leaky-wave ME dipole antenna array is designed and fabricated to operate at the 28-GHz band. It operates with wide impedance bandwidth and a peak gain of 16.55 dBi with less than 3-dB gain variation throughout the frequency range from 27 to 32 GHz.</description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Dipole antennas</subject><subject>Electric dipoles</subject><subject>Gain</subject><subject>Leaky-wave antenna (LWA)</subject><subject>Magnetic dipoles</subject><subject>magnetoelectric (ME) dipole</subject><subject>Magnetoelectric effects</subject><subject>Reflection coefficient</subject><subject>Slot antennas</subject><subject>substrate integrated waveguide (SIW)</subject><subject>Substrates</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKd3wUvBc2de0jbNsUyn4oYeJnoLafYimV1T007Yf2_GhqfH-973vQ9-hFwDnQBQebes3iaMgpgwwVhZlCdkBHlepowxOCUjSqFMJSs-z8lF36_jmpVZNiIvVbLQXy0OHhs0Q3AmuXedbzCZo_7epR_6F5OqHbBtdWJ9SBauadwGBwzHW9c1zujB-faSnFnd9Hh1nGPyPntYTp_S-evj87Sap4ZJGFIpVwA1zQ3UNpNFLQ3PgK6skFQgrjKuWWFLzW1tZK5BM6ajzDPEKOii5GNye_jbBf-zxX5Qa78NbaxUIAUVAIKJ6KIHlwm-7wNa1QW30WGngKo9MhWRqT0ydUQWIzeHiEPEf7uQhRCM8z8OT2ew</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Mak, Ka-Ming</creator><creator>So, Kwok-Kan</creator><creator>Lai, Hau-Wah</creator><creator>Luk, Kwai-Man</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5993-2991</orcidid><orcidid>https://orcid.org/0000-0003-1091-6226</orcidid></search><sort><creationdate>20171201</creationdate><title>A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application</title><author>Mak, Ka-Ming ; So, Kwok-Kan ; Lai, Hau-Wah ; Luk, Kwai-Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-99d11b05c1bf496b9c3410df7907eed43a26f8a3fbc95a1a22aeed34eebc9a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Dipole antennas</topic><topic>Electric dipoles</topic><topic>Gain</topic><topic>Leaky-wave antenna (LWA)</topic><topic>Magnetic dipoles</topic><topic>magnetoelectric (ME) dipole</topic><topic>Magnetoelectric effects</topic><topic>Reflection coefficient</topic><topic>Slot antennas</topic><topic>substrate integrated waveguide (SIW)</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mak, Ka-Ming</creatorcontrib><creatorcontrib>So, Kwok-Kan</creatorcontrib><creatorcontrib>Lai, Hau-Wah</creatorcontrib><creatorcontrib>Luk, Kwai-Man</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mak, Ka-Ming</au><au>So, Kwok-Kan</au><au>Lai, Hau-Wah</au><au>Luk, Kwai-Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>65</volume><issue>12</issue><spage>6395</spage><epage>6402</epage><pages>6395-6402</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper presents a novel frequency beam scanning slotted leaky-wave magnetoelectric (ME) dipole antenna array for the fifth generation (5G) application. The proposed antenna, which has eighteen elements of slots and electric dipoles, is built on a two-layer printed circuit board. In the lower layer, it is a conventional slotted substrate integrated waveguide (SIW) leaky-wave antenna (LWA). In the upper layer, electric dipoles are attached to the design. As for each element unit, the magnetic dipole is realized by each lower-layer aperture, while the electric dipole is realized by each pair of patches in the upper layer. The design concept is that two modes are excited together in orthogonal directions to realize the ME dipole. By introducing electric dipoles to the conventional slotted LWA, the antenna exhibits less gain variation over a wide bandwidth. The SIW leaky-wave ME dipole antenna array is designed and fabricated to operate at the 28-GHz band. It operates with wide impedance bandwidth and a peak gain of 16.55 dBi with less than 3-dB gain variation throughout the frequency range from 27 to 32 GHz.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2017.2722868</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5993-2991</orcidid><orcidid>https://orcid.org/0000-0003-1091-6226</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2017-12, Vol.65 (12), p.6395-6402 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2017_2722868 |
source | IEEE Xplore (Online service) |
subjects | Antenna arrays Antennas Bandwidths Dipole antennas Electric dipoles Gain Leaky-wave antenna (LWA) Magnetic dipoles magnetoelectric (ME) dipole Magnetoelectric effects Reflection coefficient Slot antennas substrate integrated waveguide (SIW) Substrates |
title | A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Magnetoelectric%20Dipole%20Leaky-Wave%20Antenna%20for%20Millimeter-Wave%20Application&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Mak,%20Ka-Ming&rft.date=2017-12-01&rft.volume=65&rft.issue=12&rft.spage=6395&rft.epage=6402&rft.pages=6395-6402&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2017.2722868&rft_dat=%3Cproquest_cross%3E1970711727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-99d11b05c1bf496b9c3410df7907eed43a26f8a3fbc95a1a22aeed34eebc9a683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970711727&rft_id=info:pmid/&rft_ieee_id=7967723&rfr_iscdi=true |