Loading…

Equivalent Circuit Design Method for Wideband Nonmagnetic Absorbers at Low Microwave Frequencies

An accurate equivalent circuit (EC) design approach for wideband nonmagnetic absorbers operating at the low microwave frequency (1-10 GHz) is presented. Following the impedance matching approach, this communication introduces an EC model based on the simulated data and synthetic asymptotes for singl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2020-12, Vol.68 (12), p.8215-8220
Main Authors: Hossain, M. I., Nguyen-Trong, N., Sayidmarie, K. H., Abbosh, A. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An accurate equivalent circuit (EC) design approach for wideband nonmagnetic absorbers operating at the low microwave frequency (1-10 GHz) is presented. Following the impedance matching approach, this communication introduces an EC model based on the simulated data and synthetic asymptotes for single- and double-layer frequency-selective surface (FSS)-based nonmagnetic absorbers. Two simple and commonly used resistive FSSs, i.e., square patch and single square loop, are considered in this communication. Compared to the full-wave simulations, the proposed EC model shows more than 95% accuracy. By employing the proposed model and genetic algorithm-based optimization, several designs of broadband absorbers are demonstrated. The presented single- and double-layer FSSs show 126% and 161% fractional bandwidth, respectively, with the total thickness close to the Rozanov limit. The results confirm that the proposed method is a simple and efficient way of designing thin wideband absorbers using single- or double-layer FSS configurations.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2020.2983756