Loading…
Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems
Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs o...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2022-07, Vol.70 (7), p.5144-5155 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33 |
container_end_page | 5155 |
container_issue | 7 |
container_start_page | 5144 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 70 |
creator | Yin, Tiantian Wang, Chao-Fu Xu, Kuiwen Zhou, Yulong Zhong, Yu Chen, Xudong |
description | Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way. |
doi_str_mv | 10.1109/TAP.2022.3145486 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3145486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9696232</ieee_id><sourcerecordid>2695150752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j2NzKkwcbII-hTa9zY6umUkm7r-3pcOn4-5-3x18hNwyOmKMqofVeDECCjDiLBFJJs_IgAmRxQDAzsmAUpbFCuTHJbnyftu2SZYkA_L5WKMJrjLRrD78RlNsfBWO0Rxz11TNJnrF8GXLaG1dtLT1Tzfi8TTqKbvLNw2GFl6aPAR03XrhbFHjzl-Ti3Vee7w51SF5nz2uJs_x_O3pZTKexwYUCzHjRcmAgUlkbiBVsqCiSGXOpaC8yHiKyFKamsSYlDKaUV5SVUowKAqVlZwPyX1_d-_s9wF90Ft7cE37UoNUggmaCmhTtE8ZZ713uNZ7V-1yd9SM6k6gbgXqTqA-CWyRux6pEPE_rqSSwIH_AdHlav4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695150752</pqid></control><display><type>article</type><title>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yin, Tiantian ; Wang, Chao-Fu ; Xu, Kuiwen ; Zhou, Yulong ; Zhong, Yu ; Chen, Xudong</creator><creatorcontrib>Yin, Tiantian ; Wang, Chao-Fu ; Xu, Kuiwen ; Zhou, Yulong ; Zhong, Yu ; Chen, Xudong</creatorcontrib><description>Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3145486</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deep learning (DL) ; Dielectrics ; Electric fields ; Electric flux ; electromagnetic (EM) field ; Electromagnetic scattering ; Flux density ; Integral equations ; Learning ; Mathematical models ; Method of moments ; Neural networks ; Teaching methods ; Testing ; Three-dimensional displays ; volume integral equation (VIE) ; Volume integral equations</subject><ispartof>IEEE transactions on antennas and propagation, 2022-07, Vol.70 (7), p.5144-5155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</citedby><cites>FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</cites><orcidid>0000-0002-4943-5668 ; 0000-0001-8214-526X ; 0000-0001-9616-7750 ; 0000-0001-9628-1828 ; 0000-0003-0209-4074 ; 0000-0002-2773-2741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9696232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Yin, Tiantian</creatorcontrib><creatorcontrib>Wang, Chao-Fu</creatorcontrib><creatorcontrib>Xu, Kuiwen</creatorcontrib><creatorcontrib>Zhou, Yulong</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><title>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way.</description><subject>Deep learning (DL)</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Electric flux</subject><subject>electromagnetic (EM) field</subject><subject>Electromagnetic scattering</subject><subject>Flux density</subject><subject>Integral equations</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Method of moments</subject><subject>Neural networks</subject><subject>Teaching methods</subject><subject>Testing</subject><subject>Three-dimensional displays</subject><subject>volume integral equation (VIE)</subject><subject>Volume integral equations</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j2NzKkwcbII-hTa9zY6umUkm7r-3pcOn4-5-3x18hNwyOmKMqofVeDECCjDiLBFJJs_IgAmRxQDAzsmAUpbFCuTHJbnyftu2SZYkA_L5WKMJrjLRrD78RlNsfBWO0Rxz11TNJnrF8GXLaG1dtLT1Tzfi8TTqKbvLNw2GFl6aPAR03XrhbFHjzl-Ti3Vee7w51SF5nz2uJs_x_O3pZTKexwYUCzHjRcmAgUlkbiBVsqCiSGXOpaC8yHiKyFKamsSYlDKaUV5SVUowKAqVlZwPyX1_d-_s9wF90Ft7cE37UoNUggmaCmhTtE8ZZ713uNZ7V-1yd9SM6k6gbgXqTqA-CWyRux6pEPE_rqSSwIH_AdHlav4</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yin, Tiantian</creator><creator>Wang, Chao-Fu</creator><creator>Xu, Kuiwen</creator><creator>Zhou, Yulong</creator><creator>Zhong, Yu</creator><creator>Chen, Xudong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4943-5668</orcidid><orcidid>https://orcid.org/0000-0001-8214-526X</orcidid><orcidid>https://orcid.org/0000-0001-9616-7750</orcidid><orcidid>https://orcid.org/0000-0001-9628-1828</orcidid><orcidid>https://orcid.org/0000-0003-0209-4074</orcidid><orcidid>https://orcid.org/0000-0002-2773-2741</orcidid></search><sort><creationdate>20220701</creationdate><title>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</title><author>Yin, Tiantian ; Wang, Chao-Fu ; Xu, Kuiwen ; Zhou, Yulong ; Zhong, Yu ; Chen, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning (DL)</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Electric flux</topic><topic>electromagnetic (EM) field</topic><topic>Electromagnetic scattering</topic><topic>Flux density</topic><topic>Integral equations</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Method of moments</topic><topic>Neural networks</topic><topic>Teaching methods</topic><topic>Testing</topic><topic>Three-dimensional displays</topic><topic>volume integral equation (VIE)</topic><topic>Volume integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Tiantian</creatorcontrib><creatorcontrib>Wang, Chao-Fu</creatorcontrib><creatorcontrib>Xu, Kuiwen</creatorcontrib><creatorcontrib>Zhou, Yulong</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Tiantian</au><au>Wang, Chao-Fu</au><au>Xu, Kuiwen</au><au>Zhou, Yulong</au><au>Zhong, Yu</au><au>Chen, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>70</volume><issue>7</issue><spage>5144</spage><epage>5155</epage><pages>5144-5155</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3145486</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4943-5668</orcidid><orcidid>https://orcid.org/0000-0001-8214-526X</orcidid><orcidid>https://orcid.org/0000-0001-9616-7750</orcidid><orcidid>https://orcid.org/0000-0001-9628-1828</orcidid><orcidid>https://orcid.org/0000-0003-0209-4074</orcidid><orcidid>https://orcid.org/0000-0002-2773-2741</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2022-07, Vol.70 (7), p.5144-5155 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2022_3145486 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Deep learning (DL) Dielectrics Electric fields Electric flux electromagnetic (EM) field Electromagnetic scattering Flux density Integral equations Learning Mathematical models Method of moments Neural networks Teaching methods Testing Three-dimensional displays volume integral equation (VIE) Volume integral equations |
title | Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Flux%20Density%20Learning%20Method%20for%20Solving%203-D%20Electromagnetic%20Scattering%20Problems&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Yin,%20Tiantian&rft.date=2022-07-01&rft.volume=70&rft.issue=7&rft.spage=5144&rft.epage=5155&rft.pages=5144-5155&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3145486&rft_dat=%3Cproquest_cross%3E2695150752%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695150752&rft_id=info:pmid/&rft_ieee_id=9696232&rfr_iscdi=true |