Loading…

Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems

Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2022-07, Vol.70 (7), p.5144-5155
Main Authors: Yin, Tiantian, Wang, Chao-Fu, Xu, Kuiwen, Zhou, Yulong, Zhong, Yu, Chen, Xudong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33
cites cdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33
container_end_page 5155
container_issue 7
container_start_page 5144
container_title IEEE transactions on antennas and propagation
container_volume 70
creator Yin, Tiantian
Wang, Chao-Fu
Xu, Kuiwen
Zhou, Yulong
Zhong, Yu
Chen, Xudong
description Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way.
doi_str_mv 10.1109/TAP.2022.3145486
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3145486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9696232</ieee_id><sourcerecordid>2695150752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j2NzKkwcbII-hTa9zY6umUkm7r-3pcOn4-5-3x18hNwyOmKMqofVeDECCjDiLBFJJs_IgAmRxQDAzsmAUpbFCuTHJbnyftu2SZYkA_L5WKMJrjLRrD78RlNsfBWO0Rxz11TNJnrF8GXLaG1dtLT1Tzfi8TTqKbvLNw2GFl6aPAR03XrhbFHjzl-Ti3Vee7w51SF5nz2uJs_x_O3pZTKexwYUCzHjRcmAgUlkbiBVsqCiSGXOpaC8yHiKyFKamsSYlDKaUV5SVUowKAqVlZwPyX1_d-_s9wF90Ft7cE37UoNUggmaCmhTtE8ZZ713uNZ7V-1yd9SM6k6gbgXqTqA-CWyRux6pEPE_rqSSwIH_AdHlav4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695150752</pqid></control><display><type>article</type><title>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yin, Tiantian ; Wang, Chao-Fu ; Xu, Kuiwen ; Zhou, Yulong ; Zhong, Yu ; Chen, Xudong</creator><creatorcontrib>Yin, Tiantian ; Wang, Chao-Fu ; Xu, Kuiwen ; Zhou, Yulong ; Zhong, Yu ; Chen, Xudong</creatorcontrib><description>Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3145486</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deep learning (DL) ; Dielectrics ; Electric fields ; Electric flux ; electromagnetic (EM) field ; Electromagnetic scattering ; Flux density ; Integral equations ; Learning ; Mathematical models ; Method of moments ; Neural networks ; Teaching methods ; Testing ; Three-dimensional displays ; volume integral equation (VIE) ; Volume integral equations</subject><ispartof>IEEE transactions on antennas and propagation, 2022-07, Vol.70 (7), p.5144-5155</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</citedby><cites>FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</cites><orcidid>0000-0002-4943-5668 ; 0000-0001-8214-526X ; 0000-0001-9616-7750 ; 0000-0001-9628-1828 ; 0000-0003-0209-4074 ; 0000-0002-2773-2741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9696232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Yin, Tiantian</creatorcontrib><creatorcontrib>Wang, Chao-Fu</creatorcontrib><creatorcontrib>Xu, Kuiwen</creatorcontrib><creatorcontrib>Zhou, Yulong</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><title>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way.</description><subject>Deep learning (DL)</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Electric flux</subject><subject>electromagnetic (EM) field</subject><subject>Electromagnetic scattering</subject><subject>Flux density</subject><subject>Integral equations</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Method of moments</subject><subject>Neural networks</subject><subject>Teaching methods</subject><subject>Testing</subject><subject>Three-dimensional displays</subject><subject>volume integral equation (VIE)</subject><subject>Volume integral equations</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4MoOKfvgi8FnzuTS5M2j2NzKkwcbII-hTa9zY6umUkm7r-3pcOn4-5-3x18hNwyOmKMqofVeDECCjDiLBFJJs_IgAmRxQDAzsmAUpbFCuTHJbnyftu2SZYkA_L5WKMJrjLRrD78RlNsfBWO0Rxz11TNJnrF8GXLaG1dtLT1Tzfi8TTqKbvLNw2GFl6aPAR03XrhbFHjzl-Ti3Vee7w51SF5nz2uJs_x_O3pZTKexwYUCzHjRcmAgUlkbiBVsqCiSGXOpaC8yHiKyFKamsSYlDKaUV5SVUowKAqVlZwPyX1_d-_s9wF90Ft7cE37UoNUggmaCmhTtE8ZZ713uNZ7V-1yd9SM6k6gbgXqTqA-CWyRux6pEPE_rqSSwIH_AdHlav4</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yin, Tiantian</creator><creator>Wang, Chao-Fu</creator><creator>Xu, Kuiwen</creator><creator>Zhou, Yulong</creator><creator>Zhong, Yu</creator><creator>Chen, Xudong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4943-5668</orcidid><orcidid>https://orcid.org/0000-0001-8214-526X</orcidid><orcidid>https://orcid.org/0000-0001-9616-7750</orcidid><orcidid>https://orcid.org/0000-0001-9628-1828</orcidid><orcidid>https://orcid.org/0000-0003-0209-4074</orcidid><orcidid>https://orcid.org/0000-0002-2773-2741</orcidid></search><sort><creationdate>20220701</creationdate><title>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</title><author>Yin, Tiantian ; Wang, Chao-Fu ; Xu, Kuiwen ; Zhou, Yulong ; Zhong, Yu ; Chen, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep learning (DL)</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Electric flux</topic><topic>electromagnetic (EM) field</topic><topic>Electromagnetic scattering</topic><topic>Flux density</topic><topic>Integral equations</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Method of moments</topic><topic>Neural networks</topic><topic>Teaching methods</topic><topic>Testing</topic><topic>Three-dimensional displays</topic><topic>volume integral equation (VIE)</topic><topic>Volume integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Tiantian</creatorcontrib><creatorcontrib>Wang, Chao-Fu</creatorcontrib><creatorcontrib>Xu, Kuiwen</creatorcontrib><creatorcontrib>Zhou, Yulong</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Tiantian</au><au>Wang, Chao-Fu</au><au>Xu, Kuiwen</au><au>Zhou, Yulong</au><au>Zhong, Yu</au><au>Chen, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>70</volume><issue>7</issue><spage>5144</spage><epage>5155</epage><pages>5144-5155</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Inspired by a discretized formulation resulting from volume integral equation and method of moments, we propose an electric flux density learning method (EFDLM) using cascaded neural networks to solve 3-D electromagnetic (EM) scattering problems that involve lossless dielectric objects. The inputs of the proposed EFDLM consist of the contrast of the objects, the projections of incident field, and the first-order scattered field onto the testing functions, and the output is chosen as the normalized electric flux density. Analyses on the computational complexity, computation time, and memory usage of the EFDLM are conducted to fully understand its fundamental features. Numerical simulations clearly show that the proposed method outperforms black-box learning method, which chooses the contrast and incident field as its inputs and the total electric field as its output. It is also demonstrated that the EFDLM is able to solve the scattering problems of dielectric objects with higher contrasts by increasing the number of subnetworks. Further, the pros and cons of the proposed learning approach for solving EM scattering problems are discussed, where some caveats are provided to avoid using learning approaches in a black-box way.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3145486</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4943-5668</orcidid><orcidid>https://orcid.org/0000-0001-8214-526X</orcidid><orcidid>https://orcid.org/0000-0001-9616-7750</orcidid><orcidid>https://orcid.org/0000-0001-9628-1828</orcidid><orcidid>https://orcid.org/0000-0003-0209-4074</orcidid><orcidid>https://orcid.org/0000-0002-2773-2741</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2022-07, Vol.70 (7), p.5144-5155
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2022_3145486
source IEEE Electronic Library (IEL) Journals
subjects Deep learning (DL)
Dielectrics
Electric fields
Electric flux
electromagnetic (EM) field
Electromagnetic scattering
Flux density
Integral equations
Learning
Mathematical models
Method of moments
Neural networks
Teaching methods
Testing
Three-dimensional displays
volume integral equation (VIE)
Volume integral equations
title Electric Flux Density Learning Method for Solving 3-D Electromagnetic Scattering Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Flux%20Density%20Learning%20Method%20for%20Solving%203-D%20Electromagnetic%20Scattering%20Problems&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Yin,%20Tiantian&rft.date=2022-07-01&rft.volume=70&rft.issue=7&rft.spage=5144&rft.epage=5155&rft.pages=5144-5155&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3145486&rft_dat=%3Cproquest_cross%3E2695150752%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-13bd1212c46ac2796b05b76a36503b837ee1707c4cc7010803d09d62ce5b98d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695150752&rft_id=info:pmid/&rft_ieee_id=9696232&rfr_iscdi=true