Loading…
Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database
Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2024-11, Vol.72 (11), p.8635-8646 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23 |
container_end_page | 8646 |
container_issue | 11 |
container_start_page | 8635 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 72 |
creator | Jiang, Ming Jian Ran, Wei Wei Wu, Jun Yang, Xiong Li, Yin Yuan Wu, Rui Cheng, Qiang Hu, Jun Jun Cui, Tie |
description | Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs). |
doi_str_mv | 10.1109/TAP.2024.3436679 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2024_3436679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10630590</ieee_id><sourcerecordid>3122297563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8rHNHms_VKgo2IK3kO4mkNrd1CR78N-b2h48DTM87zvwIHQLZARAqofV5H1ECeUjxllZjqszNAAhZEEphXM0IARkUdHy8xJdxbjNK5ecD9DX3FpXO9MlrLsGT-q6DzoZ_OHafqeT813E3uJXk3Sb78HpXcSPOpoG-w7PfKtdHqb27d5Hd-D_etadS3hhdOqDwTOd9CZHrtGFzXFzc5pDtF7MV9PnYvn29DKdLIuacpEKswEOUEmwBhojBHDBqIbaCtqIqhG0FLYRm5JZsCAll5KNiYWxlKRmRFM2RPfH3n3w372JSW19H7r8UjHIPqqxKFmmyJGqg48xGKv2wbU6_Cgg6qBUZaXqoFSdlObI3THijDH_8JIRURH2C7Uqcdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122297563</pqid></control><display><type>article</type><title>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiang, Ming ; Jian Ran, Wei ; Wei Wu, Jun ; Yang, Xiong ; Li, Yin ; Yuan Wu, Rui ; Cheng, Qiang ; Hu, Jun ; Jun Cui, Tie</creator><creatorcontrib>Jiang, Ming ; Jian Ran, Wei ; Wei Wu, Jun ; Yang, Xiong ; Li, Yin ; Yuan Wu, Rui ; Cheng, Qiang ; Hu, Jun ; Jun Cui, Tie</creatorcontrib><description>Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs).</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2024.3436679</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Boundary element method ; Characteristic array analysis (CAA) ; Couplings ; Design optimization ; domain decomposition method (DDM) ; Domain decomposition methods ; Finite element analysis ; Finite element method ; finite element method and boundary element method (FEM-BEM) ; Inverse matrices ; Iterative methods ; Magnetic materials ; Metamaterials ; Reconfigurable intelligent surfaces ; Simulation ; Surface impedance ; unit feature database technique (UFDT) ; Vectors</subject><ispartof>IEEE transactions on antennas and propagation, 2024-11, Vol.72 (11), p.8635-8646</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23</cites><orcidid>0000-0002-8318-9800 ; 0000-0002-4565-3000 ; 0000-0001-9764-1178 ; 0000-0003-3114-7403 ; 0000-0002-2442-8357 ; 0000-0002-5862-1497 ; 0000-0002-8194-5625 ; 0009-0007-6081-5067 ; 0009-0002-9455-716X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10630590$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Jian Ran, Wei</creatorcontrib><creatorcontrib>Wei Wu, Jun</creatorcontrib><creatorcontrib>Yang, Xiong</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Yuan Wu, Rui</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Jun Cui, Tie</creatorcontrib><title>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs).</description><subject>Accuracy</subject><subject>Boundary element method</subject><subject>Characteristic array analysis (CAA)</subject><subject>Couplings</subject><subject>Design optimization</subject><subject>domain decomposition method (DDM)</subject><subject>Domain decomposition methods</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method and boundary element method (FEM-BEM)</subject><subject>Inverse matrices</subject><subject>Iterative methods</subject><subject>Magnetic materials</subject><subject>Metamaterials</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Simulation</subject><subject>Surface impedance</subject><subject>unit feature database technique (UFDT)</subject><subject>Vectors</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8rHNHms_VKgo2IK3kO4mkNrd1CR78N-b2h48DTM87zvwIHQLZARAqofV5H1ECeUjxllZjqszNAAhZEEphXM0IARkUdHy8xJdxbjNK5ecD9DX3FpXO9MlrLsGT-q6DzoZ_OHafqeT813E3uJXk3Sb78HpXcSPOpoG-w7PfKtdHqb27d5Hd-D_etadS3hhdOqDwTOd9CZHrtGFzXFzc5pDtF7MV9PnYvn29DKdLIuacpEKswEOUEmwBhojBHDBqIbaCtqIqhG0FLYRm5JZsCAll5KNiYWxlKRmRFM2RPfH3n3w372JSW19H7r8UjHIPqqxKFmmyJGqg48xGKv2wbU6_Cgg6qBUZaXqoFSdlObI3THijDH_8JIRURH2C7Uqcdc</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jiang, Ming</creator><creator>Jian Ran, Wei</creator><creator>Wei Wu, Jun</creator><creator>Yang, Xiong</creator><creator>Li, Yin</creator><creator>Yuan Wu, Rui</creator><creator>Cheng, Qiang</creator><creator>Hu, Jun</creator><creator>Jun Cui, Tie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8318-9800</orcidid><orcidid>https://orcid.org/0000-0002-4565-3000</orcidid><orcidid>https://orcid.org/0000-0001-9764-1178</orcidid><orcidid>https://orcid.org/0000-0003-3114-7403</orcidid><orcidid>https://orcid.org/0000-0002-2442-8357</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid><orcidid>https://orcid.org/0000-0002-8194-5625</orcidid><orcidid>https://orcid.org/0009-0007-6081-5067</orcidid><orcidid>https://orcid.org/0009-0002-9455-716X</orcidid></search><sort><creationdate>20241101</creationdate><title>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</title><author>Jiang, Ming ; Jian Ran, Wei ; Wei Wu, Jun ; Yang, Xiong ; Li, Yin ; Yuan Wu, Rui ; Cheng, Qiang ; Hu, Jun ; Jun Cui, Tie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Boundary element method</topic><topic>Characteristic array analysis (CAA)</topic><topic>Couplings</topic><topic>Design optimization</topic><topic>domain decomposition method (DDM)</topic><topic>Domain decomposition methods</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method and boundary element method (FEM-BEM)</topic><topic>Inverse matrices</topic><topic>Iterative methods</topic><topic>Magnetic materials</topic><topic>Metamaterials</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Simulation</topic><topic>Surface impedance</topic><topic>unit feature database technique (UFDT)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Jian Ran, Wei</creatorcontrib><creatorcontrib>Wei Wu, Jun</creatorcontrib><creatorcontrib>Yang, Xiong</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Yuan Wu, Rui</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Jun Cui, Tie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ming</au><au>Jian Ran, Wei</au><au>Wei Wu, Jun</au><au>Yang, Xiong</au><au>Li, Yin</au><au>Yuan Wu, Rui</au><au>Cheng, Qiang</au><au>Hu, Jun</au><au>Jun Cui, Tie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>72</volume><issue>11</issue><spage>8635</spage><epage>8646</epage><pages>8635-8646</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2024.3436679</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8318-9800</orcidid><orcidid>https://orcid.org/0000-0002-4565-3000</orcidid><orcidid>https://orcid.org/0000-0001-9764-1178</orcidid><orcidid>https://orcid.org/0000-0003-3114-7403</orcidid><orcidid>https://orcid.org/0000-0002-2442-8357</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid><orcidid>https://orcid.org/0000-0002-8194-5625</orcidid><orcidid>https://orcid.org/0009-0007-6081-5067</orcidid><orcidid>https://orcid.org/0009-0002-9455-716X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2024-11, Vol.72 (11), p.8635-8646 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2024_3436679 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Boundary element method Characteristic array analysis (CAA) Couplings Design optimization domain decomposition method (DDM) Domain decomposition methods Finite element analysis Finite element method finite element method and boundary element method (FEM-BEM) Inverse matrices Iterative methods Magnetic materials Metamaterials Reconfigurable intelligent surfaces Simulation Surface impedance unit feature database technique (UFDT) Vectors |
title | Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Accurate%20Simulations%20of%20Metamaterials%20Based%20on%20Domain%20Decomposition%20and%20Unit%20Feature%20Database&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Jiang,%20Ming&rft.date=2024-11-01&rft.volume=72&rft.issue=11&rft.spage=8635&rft.epage=8646&rft.pages=8635-8646&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2024.3436679&rft_dat=%3Cproquest_cross%3E3122297563%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122297563&rft_id=info:pmid/&rft_ieee_id=10630590&rfr_iscdi=true |