Loading…

Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database

Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2024-11, Vol.72 (11), p.8635-8646
Main Authors: Jiang, Ming, Jian Ran, Wei, Wei Wu, Jun, Yang, Xiong, Li, Yin, Yuan Wu, Rui, Cheng, Qiang, Hu, Jun, Jun Cui, Tie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23
container_end_page 8646
container_issue 11
container_start_page 8635
container_title IEEE transactions on antennas and propagation
container_volume 72
creator Jiang, Ming
Jian Ran, Wei
Wei Wu, Jun
Yang, Xiong
Li, Yin
Yuan Wu, Rui
Cheng, Qiang
Hu, Jun
Jun Cui, Tie
description Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs).
doi_str_mv 10.1109/TAP.2024.3436679
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2024_3436679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10630590</ieee_id><sourcerecordid>3122297563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8rHNHms_VKgo2IK3kO4mkNrd1CR78N-b2h48DTM87zvwIHQLZARAqofV5H1ECeUjxllZjqszNAAhZEEphXM0IARkUdHy8xJdxbjNK5ecD9DX3FpXO9MlrLsGT-q6DzoZ_OHafqeT813E3uJXk3Sb78HpXcSPOpoG-w7PfKtdHqb27d5Hd-D_etadS3hhdOqDwTOd9CZHrtGFzXFzc5pDtF7MV9PnYvn29DKdLIuacpEKswEOUEmwBhojBHDBqIbaCtqIqhG0FLYRm5JZsCAll5KNiYWxlKRmRFM2RPfH3n3w372JSW19H7r8UjHIPqqxKFmmyJGqg48xGKv2wbU6_Cgg6qBUZaXqoFSdlObI3THijDH_8JIRURH2C7Uqcdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122297563</pqid></control><display><type>article</type><title>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiang, Ming ; Jian Ran, Wei ; Wei Wu, Jun ; Yang, Xiong ; Li, Yin ; Yuan Wu, Rui ; Cheng, Qiang ; Hu, Jun ; Jun Cui, Tie</creator><creatorcontrib>Jiang, Ming ; Jian Ran, Wei ; Wei Wu, Jun ; Yang, Xiong ; Li, Yin ; Yuan Wu, Rui ; Cheng, Qiang ; Hu, Jun ; Jun Cui, Tie</creatorcontrib><description>Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs).</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2024.3436679</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Boundary element method ; Characteristic array analysis (CAA) ; Couplings ; Design optimization ; domain decomposition method (DDM) ; Domain decomposition methods ; Finite element analysis ; Finite element method ; finite element method and boundary element method (FEM-BEM) ; Inverse matrices ; Iterative methods ; Magnetic materials ; Metamaterials ; Reconfigurable intelligent surfaces ; Simulation ; Surface impedance ; unit feature database technique (UFDT) ; Vectors</subject><ispartof>IEEE transactions on antennas and propagation, 2024-11, Vol.72 (11), p.8635-8646</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23</cites><orcidid>0000-0002-8318-9800 ; 0000-0002-4565-3000 ; 0000-0001-9764-1178 ; 0000-0003-3114-7403 ; 0000-0002-2442-8357 ; 0000-0002-5862-1497 ; 0000-0002-8194-5625 ; 0009-0007-6081-5067 ; 0009-0002-9455-716X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10630590$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Jian Ran, Wei</creatorcontrib><creatorcontrib>Wei Wu, Jun</creatorcontrib><creatorcontrib>Yang, Xiong</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Yuan Wu, Rui</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Jun Cui, Tie</creatorcontrib><title>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs).</description><subject>Accuracy</subject><subject>Boundary element method</subject><subject>Characteristic array analysis (CAA)</subject><subject>Couplings</subject><subject>Design optimization</subject><subject>domain decomposition method (DDM)</subject><subject>Domain decomposition methods</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite element method and boundary element method (FEM-BEM)</subject><subject>Inverse matrices</subject><subject>Iterative methods</subject><subject>Magnetic materials</subject><subject>Metamaterials</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Simulation</subject><subject>Surface impedance</subject><subject>unit feature database technique (UFDT)</subject><subject>Vectors</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3Dx4Cnrdm8rHNHms_VKgo2IK3kO4mkNrd1CR78N-b2h48DTM87zvwIHQLZARAqofV5H1ECeUjxllZjqszNAAhZEEphXM0IARkUdHy8xJdxbjNK5ecD9DX3FpXO9MlrLsGT-q6DzoZ_OHafqeT813E3uJXk3Sb78HpXcSPOpoG-w7PfKtdHqb27d5Hd-D_etadS3hhdOqDwTOd9CZHrtGFzXFzc5pDtF7MV9PnYvn29DKdLIuacpEKswEOUEmwBhojBHDBqIbaCtqIqhG0FLYRm5JZsCAll5KNiYWxlKRmRFM2RPfH3n3w372JSW19H7r8UjHIPqqxKFmmyJGqg48xGKv2wbU6_Cgg6qBUZaXqoFSdlObI3THijDH_8JIRURH2C7Uqcdc</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jiang, Ming</creator><creator>Jian Ran, Wei</creator><creator>Wei Wu, Jun</creator><creator>Yang, Xiong</creator><creator>Li, Yin</creator><creator>Yuan Wu, Rui</creator><creator>Cheng, Qiang</creator><creator>Hu, Jun</creator><creator>Jun Cui, Tie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8318-9800</orcidid><orcidid>https://orcid.org/0000-0002-4565-3000</orcidid><orcidid>https://orcid.org/0000-0001-9764-1178</orcidid><orcidid>https://orcid.org/0000-0003-3114-7403</orcidid><orcidid>https://orcid.org/0000-0002-2442-8357</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid><orcidid>https://orcid.org/0000-0002-8194-5625</orcidid><orcidid>https://orcid.org/0009-0007-6081-5067</orcidid><orcidid>https://orcid.org/0009-0002-9455-716X</orcidid></search><sort><creationdate>20241101</creationdate><title>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</title><author>Jiang, Ming ; Jian Ran, Wei ; Wei Wu, Jun ; Yang, Xiong ; Li, Yin ; Yuan Wu, Rui ; Cheng, Qiang ; Hu, Jun ; Jun Cui, Tie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Boundary element method</topic><topic>Characteristic array analysis (CAA)</topic><topic>Couplings</topic><topic>Design optimization</topic><topic>domain decomposition method (DDM)</topic><topic>Domain decomposition methods</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite element method and boundary element method (FEM-BEM)</topic><topic>Inverse matrices</topic><topic>Iterative methods</topic><topic>Magnetic materials</topic><topic>Metamaterials</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Simulation</topic><topic>Surface impedance</topic><topic>unit feature database technique (UFDT)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ming</creatorcontrib><creatorcontrib>Jian Ran, Wei</creatorcontrib><creatorcontrib>Wei Wu, Jun</creatorcontrib><creatorcontrib>Yang, Xiong</creatorcontrib><creatorcontrib>Li, Yin</creatorcontrib><creatorcontrib>Yuan Wu, Rui</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><creatorcontrib>Jun Cui, Tie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ming</au><au>Jian Ran, Wei</au><au>Wei Wu, Jun</au><au>Yang, Xiong</au><au>Li, Yin</au><au>Yuan Wu, Rui</au><au>Cheng, Qiang</au><au>Hu, Jun</au><au>Jun Cui, Tie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>72</volume><issue>11</issue><spage>8635</spage><epage>8646</epage><pages>8635-8646</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Recently, there has been tremendous interest in studying electromagnetic (EM) metamaterials. However, the full-wave simulations of large and complex metamaterials are challenging. This work proposes a novel technique for efficient and accurate simulations of metamaterials composed of finite types of units. The technique follows the framework of finite element method and boundary element method (FEM-BEM) and treats the metamaterial units by domain decomposition method (DDM). Since there are finite types of units, the various couplings among them, including the self and mutual ones, can be fully captured by analyzing characteristic subarrays. The technique first performs such analyses with low memory and CPU costs and stores the results in a database. The stored data are then used in assembling the system matrix of the overall metamaterial. Thanks to this, it is applicable to large-scale arrays without recourse to overall modeling and meshing. Furthermore, the technique significantly reduces the computational burden since only the inverse matrices of finite types of units are calculated during the iteration process of DDM. The effectiveness and accuracy of the technique are validated by realistic numerical examples. The technique facilitates accurate and efficient analyses of metamaterials and will find practical value in engineering applications, especially the design, optimization, and planning of reconfigurable intelligent surfaces (RISs).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2024.3436679</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8318-9800</orcidid><orcidid>https://orcid.org/0000-0002-4565-3000</orcidid><orcidid>https://orcid.org/0000-0001-9764-1178</orcidid><orcidid>https://orcid.org/0000-0003-3114-7403</orcidid><orcidid>https://orcid.org/0000-0002-2442-8357</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid><orcidid>https://orcid.org/0000-0002-8194-5625</orcidid><orcidid>https://orcid.org/0009-0007-6081-5067</orcidid><orcidid>https://orcid.org/0009-0002-9455-716X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2024-11, Vol.72 (11), p.8635-8646
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2024_3436679
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Boundary element method
Characteristic array analysis (CAA)
Couplings
Design optimization
domain decomposition method (DDM)
Domain decomposition methods
Finite element analysis
Finite element method
finite element method and boundary element method (FEM-BEM)
Inverse matrices
Iterative methods
Magnetic materials
Metamaterials
Reconfigurable intelligent surfaces
Simulation
Surface impedance
unit feature database technique (UFDT)
Vectors
title Efficient and Accurate Simulations of Metamaterials Based on Domain Decomposition and Unit Feature Database
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Accurate%20Simulations%20of%20Metamaterials%20Based%20on%20Domain%20Decomposition%20and%20Unit%20Feature%20Database&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Jiang,%20Ming&rft.date=2024-11-01&rft.volume=72&rft.issue=11&rft.spage=8635&rft.epage=8646&rft.pages=8635-8646&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2024.3436679&rft_dat=%3Cproquest_cross%3E3122297563%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-eb1411981fe1de5514532a1cf52d59d5265fd5b63f1f188488370f17880c30a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122297563&rft_id=info:pmid/&rft_ieee_id=10630590&rfr_iscdi=true