Loading…
Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils
We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including t...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2009-06, Vol.19 (3), p.199-205 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3 |
container_end_page | 205 |
container_issue | 3 |
container_start_page | 199 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 19 |
creator | Pleikies, J. Usenko, O. Frossati, G. Flokstra, J. |
description | We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively. |
doi_str_mv | 10.1109/TASC.2009.2019662 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2009_2019662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075621</ieee_id><sourcerecordid>2543522771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOD9-gHgTBNGbas5J0yWXo_NjUBBxw8uQZanL6NratMj89WZseOGFN0kOec7Lec8bRRdA7wCovJ-O3rI7pFSGA2Sa4kE0AM5FjBz4YXhTDrFAZMfRifcrSiERCR9E-UvTubX71p2rK1IXRJO8_oqnhowz8vY6m4zJaN2UrnC2Je-uW5Kp-1h25YZkdd-UdkEmVdN3oXKlP4uOCl16e76_T6PZ48M0e47zl6dJNspjw8Swi-fULjRHWGCYHMLMCaIQyHGOBTXUpjjUIBNmEKRhiEUCqRGcDiVwweicnUY3O92mrT976zu1dt7YstSVrXuvhJBMIGMykLf_kpBKZFJyigG9-oOu6r6tgg8lAWkS9pgECHaQaWvvW1uopnVr3W4UULUNQm2DUNsg1D6I0HO9F9be6LJodWWc_20MJiUwlgbucsc5a-3vd7DNUwT2A8YtjCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912045154</pqid></control><display><type>article</type><title>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pleikies, J. ; Usenko, O. ; Frossati, G. ; Flokstra, J.</creator><creatorcontrib>Pleikies, J. ; Usenko, O. ; Frossati, G. ; Flokstra, J.</creatorcontrib><description>We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2009.2019662</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplifiers ; Applied sciences ; Capacitance ; Capacitors. Resistors. Filters ; Circuit simulation ; Coils ; current sensors ; Design optimization ; Devices ; Direct current ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Inductance ; Interference ; Josephson device noise ; Josephson junctions ; Mathematical models ; Numerical simulation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SQUIDs ; Superconducting coils ; Superconducting device noise ; Superconducting devices ; Superconducting quantum interference devices ; Temperature measurement ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.199-205</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</citedby><cites>FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21991336$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pleikies, J.</creatorcontrib><creatorcontrib>Usenko, O.</creatorcontrib><creatorcontrib>Frossati, G.</creatorcontrib><creatorcontrib>Flokstra, J.</creatorcontrib><title>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively.</description><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Capacitors. Resistors. Filters</subject><subject>Circuit simulation</subject><subject>Coils</subject><subject>current sensors</subject><subject>Design optimization</subject><subject>Devices</subject><subject>Direct current</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Inductance</subject><subject>Interference</subject><subject>Josephson device noise</subject><subject>Josephson junctions</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SQUIDs</subject><subject>Superconducting coils</subject><subject>Superconducting device noise</subject><subject>Superconducting devices</subject><subject>Superconducting quantum interference devices</subject><subject>Temperature measurement</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOD9-gHgTBNGbas5J0yWXo_NjUBBxw8uQZanL6NratMj89WZseOGFN0kOec7Lec8bRRdA7wCovJ-O3rI7pFSGA2Sa4kE0AM5FjBz4YXhTDrFAZMfRifcrSiERCR9E-UvTubX71p2rK1IXRJO8_oqnhowz8vY6m4zJaN2UrnC2Je-uW5Kp-1h25YZkdd-UdkEmVdN3oXKlP4uOCl16e76_T6PZ48M0e47zl6dJNspjw8Swi-fULjRHWGCYHMLMCaIQyHGOBTXUpjjUIBNmEKRhiEUCqRGcDiVwweicnUY3O92mrT976zu1dt7YstSVrXuvhJBMIGMykLf_kpBKZFJyigG9-oOu6r6tgg8lAWkS9pgECHaQaWvvW1uopnVr3W4UULUNQm2DUNsg1D6I0HO9F9be6LJodWWc_20MJiUwlgbucsc5a-3vd7DNUwT2A8YtjCI</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Pleikies, J.</creator><creator>Usenko, O.</creator><creator>Frossati, G.</creator><creator>Flokstra, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</title><author>Pleikies, J. ; Usenko, O. ; Frossati, G. ; Flokstra, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Capacitors. Resistors. Filters</topic><topic>Circuit simulation</topic><topic>Coils</topic><topic>current sensors</topic><topic>Design optimization</topic><topic>Devices</topic><topic>Direct current</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Inductance</topic><topic>Interference</topic><topic>Josephson device noise</topic><topic>Josephson junctions</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SQUIDs</topic><topic>Superconducting coils</topic><topic>Superconducting device noise</topic><topic>Superconducting devices</topic><topic>Superconducting quantum interference devices</topic><topic>Temperature measurement</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pleikies, J.</creatorcontrib><creatorcontrib>Usenko, O.</creatorcontrib><creatorcontrib>Frossati, G.</creatorcontrib><creatorcontrib>Flokstra, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pleikies, J.</au><au>Usenko, O.</au><au>Frossati, G.</au><au>Flokstra, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>199</spage><epage>205</epage><pages>199-205</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2009.2019662</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.199-205 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2009_2019662 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Amplifiers Applied sciences Capacitance Capacitors. Resistors. Filters Circuit simulation Coils current sensors Design optimization Devices Direct current Electrical engineering. Electrical power engineering Electromagnets Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Inductance Interference Josephson device noise Josephson junctions Mathematical models Numerical simulation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices SQUIDs Superconducting coils Superconducting device noise Superconducting devices Superconducting quantum interference devices Temperature measurement Various equipment and components |
title | Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20Low-Tc%20DC%20SQUID%20Amplifier%20With%20Tightly%20Coupled%20Input%20Coils&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Pleikies,%20J.&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=199&rft.epage=205&rft.pages=199-205&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2009.2019662&rft_dat=%3Cproquest_cross%3E2543522771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912045154&rft_id=info:pmid/&rft_ieee_id=5075621&rfr_iscdi=true |