Loading…

Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils

We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2009-06, Vol.19 (3), p.199-205
Main Authors: Pleikies, J., Usenko, O., Frossati, G., Flokstra, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3
cites cdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3
container_end_page 205
container_issue 3
container_start_page 199
container_title IEEE transactions on applied superconductivity
container_volume 19
creator Pleikies, J.
Usenko, O.
Frossati, G.
Flokstra, J.
description We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively.
doi_str_mv 10.1109/TASC.2009.2019662
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2009_2019662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075621</ieee_id><sourcerecordid>2543522771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOD9-gHgTBNGbas5J0yWXo_NjUBBxw8uQZanL6NratMj89WZseOGFN0kOec7Lec8bRRdA7wCovJ-O3rI7pFSGA2Sa4kE0AM5FjBz4YXhTDrFAZMfRifcrSiERCR9E-UvTubX71p2rK1IXRJO8_oqnhowz8vY6m4zJaN2UrnC2Je-uW5Kp-1h25YZkdd-UdkEmVdN3oXKlP4uOCl16e76_T6PZ48M0e47zl6dJNspjw8Swi-fULjRHWGCYHMLMCaIQyHGOBTXUpjjUIBNmEKRhiEUCqRGcDiVwweicnUY3O92mrT976zu1dt7YstSVrXuvhJBMIGMykLf_kpBKZFJyigG9-oOu6r6tgg8lAWkS9pgECHaQaWvvW1uopnVr3W4UULUNQm2DUNsg1D6I0HO9F9be6LJodWWc_20MJiUwlgbucsc5a-3vd7DNUwT2A8YtjCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912045154</pqid></control><display><type>article</type><title>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pleikies, J. ; Usenko, O. ; Frossati, G. ; Flokstra, J.</creator><creatorcontrib>Pleikies, J. ; Usenko, O. ; Frossati, G. ; Flokstra, J.</creatorcontrib><description>We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2009.2019662</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Amplifiers ; Applied sciences ; Capacitance ; Capacitors. Resistors. Filters ; Circuit simulation ; Coils ; current sensors ; Design optimization ; Devices ; Direct current ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Inductance ; Interference ; Josephson device noise ; Josephson junctions ; Mathematical models ; Numerical simulation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SQUIDs ; Superconducting coils ; Superconducting device noise ; Superconducting devices ; Superconducting quantum interference devices ; Temperature measurement ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.199-205</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</citedby><cites>FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23928,23929,25138,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21991336$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pleikies, J.</creatorcontrib><creatorcontrib>Usenko, O.</creatorcontrib><creatorcontrib>Frossati, G.</creatorcontrib><creatorcontrib>Flokstra, J.</creatorcontrib><title>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively.</description><subject>Amplifiers</subject><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Capacitors. Resistors. Filters</subject><subject>Circuit simulation</subject><subject>Coils</subject><subject>current sensors</subject><subject>Design optimization</subject><subject>Devices</subject><subject>Direct current</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Inductance</subject><subject>Interference</subject><subject>Josephson device noise</subject><subject>Josephson junctions</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SQUIDs</subject><subject>Superconducting coils</subject><subject>Superconducting device noise</subject><subject>Superconducting devices</subject><subject>Superconducting quantum interference devices</subject><subject>Temperature measurement</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhosoOD9-gHgTBNGbas5J0yWXo_NjUBBxw8uQZanL6NratMj89WZseOGFN0kOec7Lec8bRRdA7wCovJ-O3rI7pFSGA2Sa4kE0AM5FjBz4YXhTDrFAZMfRifcrSiERCR9E-UvTubX71p2rK1IXRJO8_oqnhowz8vY6m4zJaN2UrnC2Je-uW5Kp-1h25YZkdd-UdkEmVdN3oXKlP4uOCl16e76_T6PZ48M0e47zl6dJNspjw8Swi-fULjRHWGCYHMLMCaIQyHGOBTXUpjjUIBNmEKRhiEUCqRGcDiVwweicnUY3O92mrT976zu1dt7YstSVrXuvhJBMIGMykLf_kpBKZFJyigG9-oOu6r6tgg8lAWkS9pgECHaQaWvvW1uopnVr3W4UULUNQm2DUNsg1D6I0HO9F9be6LJodWWc_20MJiUwlgbucsc5a-3vd7DNUwT2A8YtjCI</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Pleikies, J.</creator><creator>Usenko, O.</creator><creator>Frossati, G.</creator><creator>Flokstra, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</title><author>Pleikies, J. ; Usenko, O. ; Frossati, G. ; Flokstra, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplifiers</topic><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Capacitors. Resistors. Filters</topic><topic>Circuit simulation</topic><topic>Coils</topic><topic>current sensors</topic><topic>Design optimization</topic><topic>Devices</topic><topic>Direct current</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Inductance</topic><topic>Interference</topic><topic>Josephson device noise</topic><topic>Josephson junctions</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SQUIDs</topic><topic>Superconducting coils</topic><topic>Superconducting device noise</topic><topic>Superconducting devices</topic><topic>Superconducting quantum interference devices</topic><topic>Temperature measurement</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pleikies, J.</creatorcontrib><creatorcontrib>Usenko, O.</creatorcontrib><creatorcontrib>Frossati, G.</creatorcontrib><creatorcontrib>Flokstra, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pleikies, J.</au><au>Usenko, O.</au><au>Frossati, G.</au><au>Flokstra, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>199</spage><epage>205</epage><pages>199-205</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We optimized the design and operation of a low-Tc direct current superconducting quantum interference device (dc SQUID) with an integrated coupling coil of 1.5 muH inductance taking into account typical effects observed for similar devices. Numerical simulations were performed on a model including the capacitance of the Josephson junctions, thermal noise of the integrated shunt- and damping- resistors as well as a complex frequency dependent impedance of the SQUID loop originating from the integrated coils. The experimentally and numerically determined characteristics and sensitivity are in good agreement. A minimum additional coupled energy resolution of 700 ( h / 2p ) and 250 ( h / 2p ) was measured at a temperature of 4.2 K and 1.5 K, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2009.2019662</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2009-06, Vol.19 (3), p.199-205
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2009_2019662
source IEEE Electronic Library (IEL) Journals
subjects Amplifiers
Applied sciences
Capacitance
Capacitors. Resistors. Filters
Circuit simulation
Coils
current sensors
Design optimization
Devices
Direct current
Electrical engineering. Electrical power engineering
Electromagnets
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Inductance
Interference
Josephson device noise
Josephson junctions
Mathematical models
Numerical simulation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SQUIDs
Superconducting coils
Superconducting device noise
Superconducting devices
Superconducting quantum interference devices
Temperature measurement
Various equipment and components
title Optimization of a Low-Tc DC SQUID Amplifier With Tightly Coupled Input Coils
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20Low-Tc%20DC%20SQUID%20Amplifier%20With%20Tightly%20Coupled%20Input%20Coils&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Pleikies,%20J.&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=199&rft.epage=205&rft.pages=199-205&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2009.2019662&rft_dat=%3Cproquest_cross%3E2543522771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-b0eda521d2109100942288252b2f0c0e627a1943c219c322f416c8507915830b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912045154&rft_id=info:pmid/&rft_ieee_id=5075621&rfr_iscdi=true