Loading…
Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore
A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducti...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2015-02, Vol.25 (1), p.1-5 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523 |
container_end_page | 5 |
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 25 |
creator | Chen, Shunzhong Dai, Yinming Zhao, Baizhi Li, Yi Chang, Kun Lei, Yuanzhong Wang, Qiuliang |
description | A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented. |
doi_str_mv | 10.1109/TASC.2014.2349497 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2014_2349497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6880370</ieee_id><sourcerecordid>3516636301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBuAIgUQp_ADEYomFJcUfceqMJaKAVMSQSB2N41yKq-YD2xn673FUxMDks_ycdfdG0S3BC0Jw9liuinxBMUkWlCVZki3PohnhXMSUE34easxJLChll9GVc3scpEj4LPpcq8oarbzpO6S6GpXgPOqbUCMRl6gYB7C67-pRe9PtUDEcjEfvateBR8XReWjR1vgvtFF2Byi3vXOT2yrboqfewnV00aiDg5vfcx6V6-cyf403Hy9v-WoTa0ZTH9eCUQU1hkQxrEW4poSzJquVTgFT0mCsq0oLVacp0PBIG6VVcFXFGk7ZPHo4fTvY_nsMO8jWOA2Hg-qgH50kKScsExRngd7_o_t-tF0YLiiGieCcsaDISelpJQuNHKxplT1KguUUuZwil1Pk8jfy0HN36jEA8OdTITBbYvYDBfR8WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1630185533</pqid></control><display><type>article</type><title>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Shunzhong ; Dai, Yinming ; Zhao, Baizhi ; Li, Yi ; Chang, Kun ; Lei, Yuanzhong ; Wang, Qiuliang</creator><creatorcontrib>Chen, Shunzhong ; Dai, Yinming ; Zhao, Baizhi ; Li, Yi ; Chang, Kun ; Lei, Yuanzhong ; Wang, Qiuliang</creatorcontrib><description>A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2014.2349497</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; FABRICATION ; High-temperature superconductors ; Inserts ; MAGNETIC FIELD ; Magnetic fields ; Magnetic noise ; Magnetic separation ; Magnetic shielding ; MAGNETS ; Niobium base alloys ; Power supplies ; Ramps ; Superconducting coils ; Superconducting magnets ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Systems design</subject><ispartof>IEEE transactions on applied superconductivity, 2015-02, Vol.25 (1), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</citedby><cites>FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6880370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chen, Shunzhong</creatorcontrib><creatorcontrib>Dai, Yinming</creatorcontrib><creatorcontrib>Zhao, Baizhi</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Chang, Kun</creatorcontrib><creatorcontrib>Lei, Yuanzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><title>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented.</description><subject>Coils</subject><subject>FABRICATION</subject><subject>High-temperature superconductors</subject><subject>Inserts</subject><subject>MAGNETIC FIELD</subject><subject>Magnetic fields</subject><subject>Magnetic noise</subject><subject>Magnetic separation</subject><subject>Magnetic shielding</subject><subject>MAGNETS</subject><subject>Niobium base alloys</subject><subject>Power supplies</subject><subject>Ramps</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Systems design</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBuAIgUQp_ADEYomFJcUfceqMJaKAVMSQSB2N41yKq-YD2xn673FUxMDks_ycdfdG0S3BC0Jw9liuinxBMUkWlCVZki3PohnhXMSUE34easxJLChll9GVc3scpEj4LPpcq8oarbzpO6S6GpXgPOqbUCMRl6gYB7C67-pRe9PtUDEcjEfvateBR8XReWjR1vgvtFF2Byi3vXOT2yrboqfewnV00aiDg5vfcx6V6-cyf403Hy9v-WoTa0ZTH9eCUQU1hkQxrEW4poSzJquVTgFT0mCsq0oLVacp0PBIG6VVcFXFGk7ZPHo4fTvY_nsMO8jWOA2Hg-qgH50kKScsExRngd7_o_t-tF0YLiiGieCcsaDISelpJQuNHKxplT1KguUUuZwil1Pk8jfy0HN36jEA8OdTITBbYvYDBfR8WQ</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Chen, Shunzhong</creator><creator>Dai, Yinming</creator><creator>Zhao, Baizhi</creator><creator>Li, Yi</creator><creator>Chang, Kun</creator><creator>Lei, Yuanzhong</creator><creator>Wang, Qiuliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>201502</creationdate><title>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</title><author>Chen, Shunzhong ; Dai, Yinming ; Zhao, Baizhi ; Li, Yi ; Chang, Kun ; Lei, Yuanzhong ; Wang, Qiuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coils</topic><topic>FABRICATION</topic><topic>High-temperature superconductors</topic><topic>Inserts</topic><topic>MAGNETIC FIELD</topic><topic>Magnetic fields</topic><topic>Magnetic noise</topic><topic>Magnetic separation</topic><topic>Magnetic shielding</topic><topic>MAGNETS</topic><topic>Niobium base alloys</topic><topic>Power supplies</topic><topic>Ramps</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shunzhong</creatorcontrib><creatorcontrib>Dai, Yinming</creatorcontrib><creatorcontrib>Zhao, Baizhi</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Chang, Kun</creatorcontrib><creatorcontrib>Lei, Yuanzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shunzhong</au><au>Dai, Yinming</au><au>Zhao, Baizhi</au><au>Li, Yi</au><au>Chang, Kun</au><au>Lei, Yuanzhong</au><au>Wang, Qiuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2015-02</date><risdate>2015</risdate><volume>25</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2014.2349497</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2015-02, Vol.25 (1), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2014_2349497 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Coils FABRICATION High-temperature superconductors Inserts MAGNETIC FIELD Magnetic fields Magnetic noise Magnetic separation Magnetic shielding MAGNETS Niobium base alloys Power supplies Ramps Superconducting coils Superconducting magnets SUPERCONDUCTIVITY SUPERCONDUCTORS Systems design |
title | Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Test%20of%20an%208-T%20Superconducting%20Split%20Magnet%20System%20With%20Large%20Crossing%20Warm%20Bore&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Chen,%20Shunzhong&rft.date=2015-02&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2014.2349497&rft_dat=%3Cproquest_cross%3E3516636301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1630185533&rft_id=info:pmid/&rft_ieee_id=6880370&rfr_iscdi=true |