Loading…

Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore

A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2015-02, Vol.25 (1), p.1-5
Main Authors: Chen, Shunzhong, Dai, Yinming, Zhao, Baizhi, Li, Yi, Chang, Kun, Lei, Yuanzhong, Wang, Qiuliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523
cites cdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523
container_end_page 5
container_issue 1
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 25
creator Chen, Shunzhong
Dai, Yinming
Zhao, Baizhi
Li, Yi
Chang, Kun
Lei, Yuanzhong
Wang, Qiuliang
description A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented.
doi_str_mv 10.1109/TASC.2014.2349497
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2014_2349497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6880370</ieee_id><sourcerecordid>3516636301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBuAIgUQp_ADEYomFJcUfceqMJaKAVMSQSB2N41yKq-YD2xn673FUxMDks_ycdfdG0S3BC0Jw9liuinxBMUkWlCVZki3PohnhXMSUE34easxJLChll9GVc3scpEj4LPpcq8oarbzpO6S6GpXgPOqbUCMRl6gYB7C67-pRe9PtUDEcjEfvateBR8XReWjR1vgvtFF2Byi3vXOT2yrboqfewnV00aiDg5vfcx6V6-cyf403Hy9v-WoTa0ZTH9eCUQU1hkQxrEW4poSzJquVTgFT0mCsq0oLVacp0PBIG6VVcFXFGk7ZPHo4fTvY_nsMO8jWOA2Hg-qgH50kKScsExRngd7_o_t-tF0YLiiGieCcsaDISelpJQuNHKxplT1KguUUuZwil1Pk8jfy0HN36jEA8OdTITBbYvYDBfR8WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1630185533</pqid></control><display><type>article</type><title>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Shunzhong ; Dai, Yinming ; Zhao, Baizhi ; Li, Yi ; Chang, Kun ; Lei, Yuanzhong ; Wang, Qiuliang</creator><creatorcontrib>Chen, Shunzhong ; Dai, Yinming ; Zhao, Baizhi ; Li, Yi ; Chang, Kun ; Lei, Yuanzhong ; Wang, Qiuliang</creatorcontrib><description>A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2014.2349497</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; FABRICATION ; High-temperature superconductors ; Inserts ; MAGNETIC FIELD ; Magnetic fields ; Magnetic noise ; Magnetic separation ; Magnetic shielding ; MAGNETS ; Niobium base alloys ; Power supplies ; Ramps ; Superconducting coils ; Superconducting magnets ; SUPERCONDUCTIVITY ; SUPERCONDUCTORS ; Systems design</subject><ispartof>IEEE transactions on applied superconductivity, 2015-02, Vol.25 (1), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</citedby><cites>FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6880370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chen, Shunzhong</creatorcontrib><creatorcontrib>Dai, Yinming</creatorcontrib><creatorcontrib>Zhao, Baizhi</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Chang, Kun</creatorcontrib><creatorcontrib>Lei, Yuanzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><title>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented.</description><subject>Coils</subject><subject>FABRICATION</subject><subject>High-temperature superconductors</subject><subject>Inserts</subject><subject>MAGNETIC FIELD</subject><subject>Magnetic fields</subject><subject>Magnetic noise</subject><subject>Magnetic separation</subject><subject>Magnetic shielding</subject><subject>MAGNETS</subject><subject>Niobium base alloys</subject><subject>Power supplies</subject><subject>Ramps</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>SUPERCONDUCTIVITY</subject><subject>SUPERCONDUCTORS</subject><subject>Systems design</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBuAIgUQp_ADEYomFJcUfceqMJaKAVMSQSB2N41yKq-YD2xn673FUxMDks_ycdfdG0S3BC0Jw9liuinxBMUkWlCVZki3PohnhXMSUE34easxJLChll9GVc3scpEj4LPpcq8oarbzpO6S6GpXgPOqbUCMRl6gYB7C67-pRe9PtUDEcjEfvateBR8XReWjR1vgvtFF2Byi3vXOT2yrboqfewnV00aiDg5vfcx6V6-cyf403Hy9v-WoTa0ZTH9eCUQU1hkQxrEW4poSzJquVTgFT0mCsq0oLVacp0PBIG6VVcFXFGk7ZPHo4fTvY_nsMO8jWOA2Hg-qgH50kKScsExRngd7_o_t-tF0YLiiGieCcsaDISelpJQuNHKxplT1KguUUuZwil1Pk8jfy0HN36jEA8OdTITBbYvYDBfR8WQ</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Chen, Shunzhong</creator><creator>Dai, Yinming</creator><creator>Zhao, Baizhi</creator><creator>Li, Yi</creator><creator>Chang, Kun</creator><creator>Lei, Yuanzhong</creator><creator>Wang, Qiuliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>201502</creationdate><title>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</title><author>Chen, Shunzhong ; Dai, Yinming ; Zhao, Baizhi ; Li, Yi ; Chang, Kun ; Lei, Yuanzhong ; Wang, Qiuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coils</topic><topic>FABRICATION</topic><topic>High-temperature superconductors</topic><topic>Inserts</topic><topic>MAGNETIC FIELD</topic><topic>Magnetic fields</topic><topic>Magnetic noise</topic><topic>Magnetic separation</topic><topic>Magnetic shielding</topic><topic>MAGNETS</topic><topic>Niobium base alloys</topic><topic>Power supplies</topic><topic>Ramps</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>SUPERCONDUCTIVITY</topic><topic>SUPERCONDUCTORS</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shunzhong</creatorcontrib><creatorcontrib>Dai, Yinming</creatorcontrib><creatorcontrib>Zhao, Baizhi</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Chang, Kun</creatorcontrib><creatorcontrib>Lei, Yuanzhong</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shunzhong</au><au>Dai, Yinming</au><au>Zhao, Baizhi</au><au>Li, Yi</au><au>Chang, Kun</au><au>Lei, Yuanzhong</au><au>Wang, Qiuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2015-02</date><risdate>2015</risdate><volume>25</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A conduction-cooled superconducting split magnet system with large crossing warm bore has been successfully constructed in our laboratory for material processing applications. The magnet system design was described in a previous paper. The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers. The initial cooldown takes 9.2 days and the final temperature of the magnet is about 4.0 K. The HTS coils and NbTi coils are to be operated in the driven mode with two independent power supplies, under the operating currents of 200 A (HTS) and 139 A (NbTi), respectively. The magnet is successfully powered up to 8 T with a the ramp time of 290 min. In this paper, the fabrication and test of the superconducting split magnet system are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2014.2349497</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2015-02, Vol.25 (1), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2014_2349497
source IEEE Electronic Library (IEL) Journals
subjects Coils
FABRICATION
High-temperature superconductors
Inserts
MAGNETIC FIELD
Magnetic fields
Magnetic noise
Magnetic separation
Magnetic shielding
MAGNETS
Niobium base alloys
Power supplies
Ramps
Superconducting coils
Superconducting magnets
SUPERCONDUCTIVITY
SUPERCONDUCTORS
Systems design
title Fabrication and Test of an 8-T Superconducting Split Magnet System With Large Crossing Warm Bore
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Test%20of%20an%208-T%20Superconducting%20Split%20Magnet%20System%20With%20Large%20Crossing%20Warm%20Bore&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Chen,%20Shunzhong&rft.date=2015-02&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2014.2349497&rft_dat=%3Cproquest_cross%3E3516636301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-d832aed0e4a30c8d836153f9dac6e021f00cbbc8ad66e23612faca8d8bb3f523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1630185533&rft_id=info:pmid/&rft_ieee_id=6880370&rfr_iscdi=true