Loading…

Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System

The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2021-11, Vol.31 (8), p.1-4
Main Authors: Wang, Jukun, Bao, Shijie, Hu, Xiao, Li, Haitao, Deng, Zigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03
container_end_page 4
container_issue 8
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 31
creator Wang, Jukun
Bao, Shijie
Hu, Xiao
Li, Haitao
Deng, Zigang
description The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system.
doi_str_mv 10.1109/TASC.2021.3099776
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2021_3099776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9496231</ieee_id><sourcerecordid>2560924468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pthPH8bGqCq1U4JBwtpx4Q1PlDzupFJ4elxROu9qdb2c1nndP8IIQLJ7SZbJaUEzJIsBCcB5deDPCWOxTRtil6zEjfkxpcO3dWHvAmIRxyGbe99tQgylzVaGkH_SI2gb1e0DbpqgGaHJAbfE7SDoA_bddgmn12Ki6zFG6B1M7vJxWmzRBr-qzgqO_Pqp8UL3D0iEDlBrV2K41PUpG20N9610VqrJwd65z7-N5na42_u79Zbta7vychqz3IxFojhXmnOVYuycYEJHhAgrIgQMoobHiWaiIzrjIFECMI0F0RAMVMcDB3Huc7nam_RrA9vLQDqZxlpKyCAsahlHsVGRS5aa11kAhO1PWyoySYHmKWJ4ilqeI5TlixzxMTAkA_3oRCudNgh9iGHkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560924468</pqid></control><display><type>article</type><title>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Jukun ; Bao, Shijie ; Hu, Xiao ; Li, Haitao ; Deng, Zigang</creator><creatorcontrib>Wang, Jukun ; Bao, Shijie ; Hu, Xiao ; Li, Haitao ; Deng, Zigang</creatorcontrib><description>The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2021.3099776</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamic thermal ; Aerodynamics ; Air flow ; Automobiles ; Computational fluid dynamics ; Electron tubes ; evacuated tube transport ; Evacuation systems ; High speed ; High temperature ; high temperature superconducting maglev ; High-temperature superconductors ; K-omega turbulence model ; Magnetic levitation vehicles ; Mathematical model ; Mathematical models ; Numerical methods ; numerical simulation ; Shock waves ; Spoilers ; Temperature distribution ; Three dimensional models ; Transportation systems ; Turbulence models ; ultra-high speed ; Wind tunnel testing ; Wind tunnels</subject><ispartof>IEEE transactions on applied superconductivity, 2021-11, Vol.31 (8), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03</cites><orcidid>0000-0002-9546-6836 ; 0000-0001-7937-9081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9496231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Jukun</creatorcontrib><creatorcontrib>Bao, Shijie</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Deng, Zigang</creatorcontrib><title>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system.</description><subject>Aerodynamic thermal</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Automobiles</subject><subject>Computational fluid dynamics</subject><subject>Electron tubes</subject><subject>evacuated tube transport</subject><subject>Evacuation systems</subject><subject>High speed</subject><subject>High temperature</subject><subject>high temperature superconducting maglev</subject><subject>High-temperature superconductors</subject><subject>K-omega turbulence model</subject><subject>Magnetic levitation vehicles</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>numerical simulation</subject><subject>Shock waves</subject><subject>Spoilers</subject><subject>Temperature distribution</subject><subject>Three dimensional models</subject><subject>Transportation systems</subject><subject>Turbulence models</subject><subject>ultra-high speed</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pthPH8bGqCq1U4JBwtpx4Q1PlDzupFJ4elxROu9qdb2c1nndP8IIQLJ7SZbJaUEzJIsBCcB5deDPCWOxTRtil6zEjfkxpcO3dWHvAmIRxyGbe99tQgylzVaGkH_SI2gb1e0DbpqgGaHJAbfE7SDoA_bddgmn12Ki6zFG6B1M7vJxWmzRBr-qzgqO_Pqp8UL3D0iEDlBrV2K41PUpG20N9610VqrJwd65z7-N5na42_u79Zbta7vychqz3IxFojhXmnOVYuycYEJHhAgrIgQMoobHiWaiIzrjIFECMI0F0RAMVMcDB3Huc7nam_RrA9vLQDqZxlpKyCAsahlHsVGRS5aa11kAhO1PWyoySYHmKWJ4ilqeI5TlixzxMTAkA_3oRCudNgh9iGHkc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Wang, Jukun</creator><creator>Bao, Shijie</creator><creator>Hu, Xiao</creator><creator>Li, Haitao</creator><creator>Deng, Zigang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9546-6836</orcidid><orcidid>https://orcid.org/0000-0001-7937-9081</orcidid></search><sort><creationdate>20211101</creationdate><title>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</title><author>Wang, Jukun ; Bao, Shijie ; Hu, Xiao ; Li, Haitao ; Deng, Zigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamic thermal</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Automobiles</topic><topic>Computational fluid dynamics</topic><topic>Electron tubes</topic><topic>evacuated tube transport</topic><topic>Evacuation systems</topic><topic>High speed</topic><topic>High temperature</topic><topic>high temperature superconducting maglev</topic><topic>High-temperature superconductors</topic><topic>K-omega turbulence model</topic><topic>Magnetic levitation vehicles</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>numerical simulation</topic><topic>Shock waves</topic><topic>Spoilers</topic><topic>Temperature distribution</topic><topic>Three dimensional models</topic><topic>Transportation systems</topic><topic>Turbulence models</topic><topic>ultra-high speed</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jukun</creatorcontrib><creatorcontrib>Bao, Shijie</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Deng, Zigang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jukun</au><au>Bao, Shijie</au><au>Hu, Xiao</au><au>Li, Haitao</au><au>Deng, Zigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>8</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2021.3099776</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9546-6836</orcidid><orcidid>https://orcid.org/0000-0001-7937-9081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2021-11, Vol.31 (8), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2021_3099776
source IEEE Electronic Library (IEL) Journals
subjects Aerodynamic thermal
Aerodynamics
Air flow
Automobiles
Computational fluid dynamics
Electron tubes
evacuated tube transport
Evacuation systems
High speed
High temperature
high temperature superconducting maglev
High-temperature superconductors
K-omega turbulence model
Magnetic levitation vehicles
Mathematical model
Mathematical models
Numerical methods
numerical simulation
Shock waves
Spoilers
Temperature distribution
Three dimensional models
Transportation systems
Turbulence models
ultra-high speed
Wind tunnel testing
Wind tunnels
title Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20on%20the%20Influence%20of%20the%20Speed%20on%20the%20Aerodynamic%20Thermal%20in%20the%20HTS%20Maglev-Evacuated%20Tube%20Transport%20System&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wang,%20Jukun&rft.date=2021-11-01&rft.volume=31&rft.issue=8&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2021.3099776&rft_dat=%3Cproquest_cross%3E2560924468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560924468&rft_id=info:pmid/&rft_ieee_id=9496231&rfr_iscdi=true