Loading…
Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System
The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2021-11, Vol.31 (8), p.1-4 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03 |
container_end_page | 4 |
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 31 |
creator | Wang, Jukun Bao, Shijie Hu, Xiao Li, Haitao Deng, Zigang |
description | The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system. |
doi_str_mv | 10.1109/TASC.2021.3099776 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2021_3099776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9496231</ieee_id><sourcerecordid>2560924468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pthPH8bGqCq1U4JBwtpx4Q1PlDzupFJ4elxROu9qdb2c1nndP8IIQLJ7SZbJaUEzJIsBCcB5deDPCWOxTRtil6zEjfkxpcO3dWHvAmIRxyGbe99tQgylzVaGkH_SI2gb1e0DbpqgGaHJAbfE7SDoA_bddgmn12Ki6zFG6B1M7vJxWmzRBr-qzgqO_Pqp8UL3D0iEDlBrV2K41PUpG20N9610VqrJwd65z7-N5na42_u79Zbta7vychqz3IxFojhXmnOVYuycYEJHhAgrIgQMoobHiWaiIzrjIFECMI0F0RAMVMcDB3Huc7nam_RrA9vLQDqZxlpKyCAsahlHsVGRS5aa11kAhO1PWyoySYHmKWJ4ilqeI5TlixzxMTAkA_3oRCudNgh9iGHkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560924468</pqid></control><display><type>article</type><title>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Jukun ; Bao, Shijie ; Hu, Xiao ; Li, Haitao ; Deng, Zigang</creator><creatorcontrib>Wang, Jukun ; Bao, Shijie ; Hu, Xiao ; Li, Haitao ; Deng, Zigang</creatorcontrib><description>The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2021.3099776</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamic thermal ; Aerodynamics ; Air flow ; Automobiles ; Computational fluid dynamics ; Electron tubes ; evacuated tube transport ; Evacuation systems ; High speed ; High temperature ; high temperature superconducting maglev ; High-temperature superconductors ; K-omega turbulence model ; Magnetic levitation vehicles ; Mathematical model ; Mathematical models ; Numerical methods ; numerical simulation ; Shock waves ; Spoilers ; Temperature distribution ; Three dimensional models ; Transportation systems ; Turbulence models ; ultra-high speed ; Wind tunnel testing ; Wind tunnels</subject><ispartof>IEEE transactions on applied superconductivity, 2021-11, Vol.31 (8), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03</cites><orcidid>0000-0002-9546-6836 ; 0000-0001-7937-9081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9496231$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Jukun</creatorcontrib><creatorcontrib>Bao, Shijie</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Deng, Zigang</creatorcontrib><title>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system.</description><subject>Aerodynamic thermal</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Automobiles</subject><subject>Computational fluid dynamics</subject><subject>Electron tubes</subject><subject>evacuated tube transport</subject><subject>Evacuation systems</subject><subject>High speed</subject><subject>High temperature</subject><subject>high temperature superconducting maglev</subject><subject>High-temperature superconductors</subject><subject>K-omega turbulence model</subject><subject>Magnetic levitation vehicles</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>numerical simulation</subject><subject>Shock waves</subject><subject>Spoilers</subject><subject>Temperature distribution</subject><subject>Three dimensional models</subject><subject>Transportation systems</subject><subject>Turbulence models</subject><subject>ultra-high speed</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhCMEEqXwAIiLJc4pthPH8bGqCq1U4JBwtpx4Q1PlDzupFJ4elxROu9qdb2c1nndP8IIQLJ7SZbJaUEzJIsBCcB5deDPCWOxTRtil6zEjfkxpcO3dWHvAmIRxyGbe99tQgylzVaGkH_SI2gb1e0DbpqgGaHJAbfE7SDoA_bddgmn12Ki6zFG6B1M7vJxWmzRBr-qzgqO_Pqp8UL3D0iEDlBrV2K41PUpG20N9610VqrJwd65z7-N5na42_u79Zbta7vychqz3IxFojhXmnOVYuycYEJHhAgrIgQMoobHiWaiIzrjIFECMI0F0RAMVMcDB3Huc7nam_RrA9vLQDqZxlpKyCAsahlHsVGRS5aa11kAhO1PWyoySYHmKWJ4ilqeI5TlixzxMTAkA_3oRCudNgh9iGHkc</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Wang, Jukun</creator><creator>Bao, Shijie</creator><creator>Hu, Xiao</creator><creator>Li, Haitao</creator><creator>Deng, Zigang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9546-6836</orcidid><orcidid>https://orcid.org/0000-0001-7937-9081</orcidid></search><sort><creationdate>20211101</creationdate><title>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</title><author>Wang, Jukun ; Bao, Shijie ; Hu, Xiao ; Li, Haitao ; Deng, Zigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamic thermal</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Automobiles</topic><topic>Computational fluid dynamics</topic><topic>Electron tubes</topic><topic>evacuated tube transport</topic><topic>Evacuation systems</topic><topic>High speed</topic><topic>High temperature</topic><topic>high temperature superconducting maglev</topic><topic>High-temperature superconductors</topic><topic>K-omega turbulence model</topic><topic>Magnetic levitation vehicles</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>numerical simulation</topic><topic>Shock waves</topic><topic>Spoilers</topic><topic>Temperature distribution</topic><topic>Three dimensional models</topic><topic>Transportation systems</topic><topic>Turbulence models</topic><topic>ultra-high speed</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jukun</creatorcontrib><creatorcontrib>Bao, Shijie</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Deng, Zigang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jukun</au><au>Bao, Shijie</au><au>Hu, Xiao</au><au>Li, Haitao</au><au>Deng, Zigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>8</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The high temperature superconducting (HTS) maglev-evacuated tube transport (ETT) system is deemed as the next-generation transport system, with the potential to realize ultra-high speed. When the HTS maglev train travels inside the closed tube, it can cause serious aerodynamic thermal problems that affect the traffic safety. In this paper, a three-dimensional model and the Reynolds Average Navier-Stokes (RANS) based on SST k-ω turbulence model are used to study the aerodynamic thermal of the HTS maglev-ETT system. The numerical methods were verified by the wind tunnel experiment of the airfoil. The temperature distribution and aerodynamic thermal phenomena of the train and tube at different speeds were analyzed. The results show that the aerodynamic thermal of the HTS Maglev-ETT system is significantly affected by the speed. Due to the limitation of the annular space, the airflow is compressed in front of the head car and expanded near the tail car, making the temperature field more complex. The faster the train travels, the higher the average surface temperature of the train becomes. The shock wave will appear at a high speed, which further deteriorates the temperature field distribution of the system. These research results can provide a reference for the construction of the HTS Maglev-ETT system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2021.3099776</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9546-6836</orcidid><orcidid>https://orcid.org/0000-0001-7937-9081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2021-11, Vol.31 (8), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2021_3099776 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aerodynamic thermal Aerodynamics Air flow Automobiles Computational fluid dynamics Electron tubes evacuated tube transport Evacuation systems High speed High temperature high temperature superconducting maglev High-temperature superconductors K-omega turbulence model Magnetic levitation vehicles Mathematical model Mathematical models Numerical methods numerical simulation Shock waves Spoilers Temperature distribution Three dimensional models Transportation systems Turbulence models ultra-high speed Wind tunnel testing Wind tunnels |
title | Numerical Study on the Influence of the Speed on the Aerodynamic Thermal in the HTS Maglev-Evacuated Tube Transport System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20on%20the%20Influence%20of%20the%20Speed%20on%20the%20Aerodynamic%20Thermal%20in%20the%20HTS%20Maglev-Evacuated%20Tube%20Transport%20System&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wang,%20Jukun&rft.date=2021-11-01&rft.volume=31&rft.issue=8&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2021.3099776&rft_dat=%3Cproquest_cross%3E2560924468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-693d70a0775c0deed5e19b0fefece7eea9d0a7b4a1db79baee80691d623a65e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560924468&rft_id=info:pmid/&rft_ieee_id=9496231&rfr_iscdi=true |