Loading…
Robustness and Regularization of Personal Audio Systems
As well as being able to reproduce sound in one region of space, it would be useful to reduce the level of reproduced sound in other spatial regions, with a "personal audio" system. For mobile devices this is motivated by issues of privacy for the user and the need to reduce annoyance for...
Saved in:
Published in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2012-09, Vol.20 (7), p.2123-2133 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As well as being able to reproduce sound in one region of space, it would be useful to reduce the level of reproduced sound in other spatial regions, with a "personal audio" system. For mobile devices this is motivated by issues of privacy for the user and the need to reduce annoyance for other people nearby. Such personal audio systems can be realized with arrays of loudspeakers that become superdirectional at low frequencies, when the array dimensions are small compared with the acoustic wavelength. The design of the array then becomes a compromise between performance and array effort, defined as the sum of mean squared driving signals. Various methods of formulating this tradeoff as a regularization problem have been suggested and the connection between these formulations is discussed. Large array efforts are due to strongly self-cancelling multipole arrays. A concern is then the robustness of such an array to variations in the acoustic environment and driver sensitivity and position. The design of an array that is robust to these uncertainties then leads to a generalization of regularization. |
---|---|
ISSN: | 1558-7916 2329-9290 1558-7924 2329-9304 |
DOI: | 10.1109/TASL.2012.2197613 |