Loading…
Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants
This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, share...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2017-12, Vol.11 (6), p.1366-1376 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-eadd1e34de3a04dcd4f467aeacb275e5dc881a79e1027230c20c816b0404d1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-eadd1e34de3a04dcd4f467aeacb275e5dc881a79e1027230c20c816b0404d1b3 |
container_end_page | 1376 |
container_issue | 6 |
container_start_page | 1366 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 11 |
creator | Yeon, Pyungwoo Mirbozorgi, S. Abdollah Lim, Jaemyung Ghovanloo, Maysam |
description | This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm 2 data-Tx/power-Rx coil is implemented using insulated bonding wire with 25-μm diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was 2.7 × 10 -6 and 5 × 10 -6 in the air and tissue environments, respectively. |
doi_str_mv | 10.1109/TBCAS.2017.2775638 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBCAS_2017_2775638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8241904</ieee_id><sourcerecordid>1984263939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-eadd1e34de3a04dcd4f467aeacb275e5dc881a79e1027230c20c816b0404d1b3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi1ERUvgD4CELPXCZYO_dr0-JhGFSKlAyt4trz2hbnfXwd5tFc78cBwSekAjeUaa5x2N50XoHSVzSon61CxXi-2cESrnTMqy4vULdEWVIIVSirw81pwVohTlJXqd0j0hZcUUe4Uu86u4YNUV-n0DJvnWd3484O04uQMOA17Y0T8CXhr7gBvooIcxHrAZHP4eniDiJpoh9T4ln-HmLobpx11u4_XgppN044cHvAsR3_qu81kPsdj6X-Dw0ocenLemw-t-35lhTG_Qxc50Cd6e8ww1N5-b1ddi8-3LerXYFJarcizAOEeBCwfcEOGsEztRSQPGtkyWUDpb19RIBZQwyTixjNiaVi0RmaYtn6GPp7H7GH5OkEadv2ChyztAmJKmqs434SrHDF3_h96HKQ55Oc2oFIJLVVWZYifKxpBShJ3eR9-beNCU6KNF-q9F-miRPluURR_Oo6c2H-JZ8s-TDLw_AR4Ants1E1QRwf8ARqyWzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174437966</pqid></control><display><type>article</type><title>Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants</title><source>IEEE Xplore (Online service)</source><creator>Yeon, Pyungwoo ; Mirbozorgi, S. Abdollah ; Lim, Jaemyung ; Ghovanloo, Maysam</creator><creatorcontrib>Yeon, Pyungwoo ; Mirbozorgi, S. Abdollah ; Lim, Jaemyung ; Ghovanloo, Maysam</creatorcontrib><description>This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm 2 data-Tx/power-Rx coil is implemented using insulated bonding wire with 25-μm diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was 2.7 × 10 -6 and 5 × 10 -6 in the air and tissue environments, respectively.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2017.2775638</identifier><identifier>PMID: 29293426</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bit error rate ; Brain ; Brain models ; Circuit design ; Coils ; Couplings ; Data transmission ; Design optimization ; Equipment Design ; Feasibility studies ; Floating structures ; Free-floating neural interfacing probes ; Implants ; Medical devices ; mm-sized implantable medical devices ; Neural networks ; Power efficiency ; Power transmission ; Prostheses and Implants ; pulse-based near-field transceiver ; Surgical implants ; Telemetry ; Telemetry - methods ; Tissues ; Transmission circuits ; Transmission efficiency ; Transplants & implants ; Wireless communication ; Wireless power transmission ; wireless power/data transmission ; Wireless Technology - instrumentation</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2017-12, Vol.11 (6), p.1366-1376</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-eadd1e34de3a04dcd4f467aeacb275e5dc881a79e1027230c20c816b0404d1b3</citedby><cites>FETCH-LOGICAL-c395t-eadd1e34de3a04dcd4f467aeacb275e5dc881a79e1027230c20c816b0404d1b3</cites><orcidid>0000-0001-9502-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8241904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29293426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeon, Pyungwoo</creatorcontrib><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Lim, Jaemyung</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><title>Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm 2 data-Tx/power-Rx coil is implemented using insulated bonding wire with 25-μm diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was 2.7 × 10 -6 and 5 × 10 -6 in the air and tissue environments, respectively.</description><subject>Bit error rate</subject><subject>Brain</subject><subject>Brain models</subject><subject>Circuit design</subject><subject>Coils</subject><subject>Couplings</subject><subject>Data transmission</subject><subject>Design optimization</subject><subject>Equipment Design</subject><subject>Feasibility studies</subject><subject>Floating structures</subject><subject>Free-floating neural interfacing probes</subject><subject>Implants</subject><subject>Medical devices</subject><subject>mm-sized implantable medical devices</subject><subject>Neural networks</subject><subject>Power efficiency</subject><subject>Power transmission</subject><subject>Prostheses and Implants</subject><subject>pulse-based near-field transceiver</subject><subject>Surgical implants</subject><subject>Telemetry</subject><subject>Telemetry - methods</subject><subject>Tissues</subject><subject>Transmission circuits</subject><subject>Transmission efficiency</subject><subject>Transplants & implants</subject><subject>Wireless communication</subject><subject>Wireless power transmission</subject><subject>wireless power/data transmission</subject><subject>Wireless Technology - instrumentation</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi1ERUvgD4CELPXCZYO_dr0-JhGFSKlAyt4trz2hbnfXwd5tFc78cBwSekAjeUaa5x2N50XoHSVzSon61CxXi-2cESrnTMqy4vULdEWVIIVSirw81pwVohTlJXqd0j0hZcUUe4Uu86u4YNUV-n0DJvnWd3484O04uQMOA17Y0T8CXhr7gBvooIcxHrAZHP4eniDiJpoh9T4ln-HmLobpx11u4_XgppN044cHvAsR3_qu81kPsdj6X-Dw0ocenLemw-t-35lhTG_Qxc50Cd6e8ww1N5-b1ddi8-3LerXYFJarcizAOEeBCwfcEOGsEztRSQPGtkyWUDpb19RIBZQwyTixjNiaVi0RmaYtn6GPp7H7GH5OkEadv2ChyztAmJKmqs434SrHDF3_h96HKQ55Oc2oFIJLVVWZYifKxpBShJ3eR9-beNCU6KNF-q9F-miRPluURR_Oo6c2H-JZ8s-TDLw_AR4Ants1E1QRwf8ARqyWzg</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Yeon, Pyungwoo</creator><creator>Mirbozorgi, S. Abdollah</creator><creator>Lim, Jaemyung</creator><creator>Ghovanloo, Maysam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9502-3704</orcidid></search><sort><creationdate>20171201</creationdate><title>Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants</title><author>Yeon, Pyungwoo ; Mirbozorgi, S. Abdollah ; Lim, Jaemyung ; Ghovanloo, Maysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-eadd1e34de3a04dcd4f467aeacb275e5dc881a79e1027230c20c816b0404d1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bit error rate</topic><topic>Brain</topic><topic>Brain models</topic><topic>Circuit design</topic><topic>Coils</topic><topic>Couplings</topic><topic>Data transmission</topic><topic>Design optimization</topic><topic>Equipment Design</topic><topic>Feasibility studies</topic><topic>Floating structures</topic><topic>Free-floating neural interfacing probes</topic><topic>Implants</topic><topic>Medical devices</topic><topic>mm-sized implantable medical devices</topic><topic>Neural networks</topic><topic>Power efficiency</topic><topic>Power transmission</topic><topic>Prostheses and Implants</topic><topic>pulse-based near-field transceiver</topic><topic>Surgical implants</topic><topic>Telemetry</topic><topic>Telemetry - methods</topic><topic>Tissues</topic><topic>Transmission circuits</topic><topic>Transmission efficiency</topic><topic>Transplants & implants</topic><topic>Wireless communication</topic><topic>Wireless power transmission</topic><topic>wireless power/data transmission</topic><topic>Wireless Technology - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeon, Pyungwoo</creatorcontrib><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Lim, Jaemyung</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeon, Pyungwoo</au><au>Mirbozorgi, S. Abdollah</au><au>Lim, Jaemyung</au><au>Ghovanloo, Maysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>1366</spage><epage>1376</epage><pages>1366-1376</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm 2 data-Tx/power-Rx coil is implemented using insulated bonding wire with 25-μm diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was 2.7 × 10 -6 and 5 × 10 -6 in the air and tissue environments, respectively.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29293426</pmid><doi>10.1109/TBCAS.2017.2775638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9502-3704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2017-12, Vol.11 (6), p.1366-1376 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TBCAS_2017_2775638 |
source | IEEE Xplore (Online service) |
subjects | Bit error rate Brain Brain models Circuit design Coils Couplings Data transmission Design optimization Equipment Design Feasibility studies Floating structures Free-floating neural interfacing probes Implants Medical devices mm-sized implantable medical devices Neural networks Power efficiency Power transmission Prostheses and Implants pulse-based near-field transceiver Surgical implants Telemetry Telemetry - methods Tissues Transmission circuits Transmission efficiency Transplants & implants Wireless communication Wireless power transmission wireless power/data transmission Wireless Technology - instrumentation |
title | Feasibility Study on Active Back Telemetry and Power Transmission Through an Inductive Link for Millimeter-Sized Biomedical Implants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20Study%20on%20Active%20Back%20Telemetry%20and%20Power%20Transmission%20Through%20an%20Inductive%20Link%20for%20Millimeter-Sized%20Biomedical%20Implants&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Yeon,%20Pyungwoo&rft.date=2017-12-01&rft.volume=11&rft.issue=6&rft.spage=1366&rft.epage=1376&rft.pages=1366-1376&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2017.2775638&rft_dat=%3Cproquest_cross%3E1984263939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-eadd1e34de3a04dcd4f467aeacb275e5dc881a79e1027230c20c816b0404d1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174437966&rft_id=info:pmid/29293426&rft_ieee_id=8241904&rfr_iscdi=true |