Loading…

Accuracy Comparison Across Face Recognition Algorithms: Where Are We on Measuring Race Bias?

Previous generations of face recognition algorithms differ in accuracy for images of different races (race bias). Here, we present the possible underlying factors (data-driven and scenario modeling) and methodological considerations for assessing race bias in algorithms. We discuss data-driven facto...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biometrics, behavior, and identity science behavior, and identity science, 2021-01, Vol.3 (1), p.101-111
Main Authors: Cavazos, Jacqueline G., Phillips, P. Jonathon, Castillo, Carlos D., O'Toole, Alice J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4319-5086f9b81a6e0ff14fd21143796cf5d1aa4eb33e974948b4f8da8a49f9098f133
cites cdi_FETCH-LOGICAL-c4319-5086f9b81a6e0ff14fd21143796cf5d1aa4eb33e974948b4f8da8a49f9098f133
container_end_page 111
container_issue 1
container_start_page 101
container_title IEEE transactions on biometrics, behavior, and identity science
container_volume 3
creator Cavazos, Jacqueline G.
Phillips, P. Jonathon
Castillo, Carlos D.
O'Toole, Alice J.
description Previous generations of face recognition algorithms differ in accuracy for images of different races (race bias). Here, we present the possible underlying factors (data-driven and scenario modeling) and methodological considerations for assessing race bias in algorithms. We discuss data-driven factors (e.g., image quality, image population statistics, and algorithm architecture), and scenario modeling factors that consider the role of the "user" of the algorithm (e.g., threshold decisions and demographic constraints). To illustrate how these issues apply, we present data from four face recognition algorithms (a previous-generation algorithm and three deep convolutional neural networks, DCNNs) for East Asian and Caucasian faces. First, dataset difficulty affected both overall recognition accuracy and race bias, such that race bias increased with item difficulty. Second, for all four algorithms, the degree of bias varied depending on the identification decision threshold. To achieve equal false accept rates (FARs), East Asian faces required higher identification thresholds than Caucasian faces, for all algorithms. Third, demographic constraints on the formulation of the distributions used in the test, impacted estimates of algorithm accuracy. We conclude that race bias needs to be measured for individual applications and we provide a checklist for measuring this bias in face recognition algorithms.
doi_str_mv 10.1109/TBIOM.2020.3027269
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBIOM_2020_3027269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9209125</ieee_id><sourcerecordid>2489599259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4319-5086f9b81a6e0ff14fd21143796cf5d1aa4eb33e974948b4f8da8a49f9098f133</originalsourceid><addsrcrecordid>eNpdkVtrGzEQhUVpaUKaP9BCWehLX-zotruaPrQ4JjdICISUvBSELI9shd2VI3kL-ffV2q5JAhISmu8cNHMI-czomDEKJ_enV7c3Y045HQvKa17BO3LIK1GPKknr9y_uB-Q4pUdKMyohr4_kQIhSlYqzQ_JnYm0fjX0upqFdmehT6IqJjSGl4txYLO7QhkXn1354bxYh-vWyTT-KhyVGLCZ5P2CRazdoUh99tyjuBtmpN-nXJ_LBmSbh8e48Ir_Pz-6nl6Pr24ur6eR6ZKVgMCqpqhzMFDMVUueYdHPOmBQ1VNaVc2aMxJkQCLUEqWbSqblRRoIDCsoxIY7Iz63vqp-1OLfYraNp9Cr61sRnHYzXryudX-pF-KtrVQPUZTb4vjOI4anHtNatTxabxnQY-qS5VFAC8BIy-u0N-hj62OX2NhSjeeQDxbfUZpIR3f4zjOohP73JTw_56V1-WfT1ZRt7yf-0MvBlC3hE3JeBU2C8FP8AckCeNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489106409</pqid></control><display><type>article</type><title>Accuracy Comparison Across Face Recognition Algorithms: Where Are We on Measuring Race Bias?</title><source>IEEE Xplore (Online service)</source><creator>Cavazos, Jacqueline G. ; Phillips, P. Jonathon ; Castillo, Carlos D. ; O'Toole, Alice J.</creator><creatorcontrib>Cavazos, Jacqueline G. ; Phillips, P. Jonathon ; Castillo, Carlos D. ; O'Toole, Alice J.</creatorcontrib><description>Previous generations of face recognition algorithms differ in accuracy for images of different races (race bias). Here, we present the possible underlying factors (data-driven and scenario modeling) and methodological considerations for assessing race bias in algorithms. We discuss data-driven factors (e.g., image quality, image population statistics, and algorithm architecture), and scenario modeling factors that consider the role of the "user" of the algorithm (e.g., threshold decisions and demographic constraints). To illustrate how these issues apply, we present data from four face recognition algorithms (a previous-generation algorithm and three deep convolutional neural networks, DCNNs) for East Asian and Caucasian faces. First, dataset difficulty affected both overall recognition accuracy and race bias, such that race bias increased with item difficulty. Second, for all four algorithms, the degree of bias varied depending on the identification decision threshold. To achieve equal false accept rates (FARs), East Asian faces required higher identification thresholds than Caucasian faces, for all algorithms. Third, demographic constraints on the formulation of the distributions used in the test, impacted estimates of algorithm accuracy. We conclude that race bias needs to be measured for individual applications and we provide a checklist for measuring this bias in face recognition algorithms.</description><identifier>ISSN: 2637-6407</identifier><identifier>EISSN: 2637-6407</identifier><identifier>DOI: 10.1109/TBIOM.2020.3027269</identifier><identifier>PMID: 33585821</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Bias ; Computational modeling ; Convolutional neural networks ; deep convolutional neural networks ; Demographics ; Face recognition ; Face recognition algorithm ; Faces ; Image quality ; Modelling ; Object recognition ; Population statistics ; Prediction algorithms ; Principal component analysis ; Race ; race bias ; the other-race effect</subject><ispartof>IEEE transactions on biometrics, behavior, and identity science, 2021-01, Vol.3 (1), p.101-111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4319-5086f9b81a6e0ff14fd21143796cf5d1aa4eb33e974948b4f8da8a49f9098f133</citedby><cites>FETCH-LOGICAL-c4319-5086f9b81a6e0ff14fd21143796cf5d1aa4eb33e974948b4f8da8a49f9098f133</cites><orcidid>0000-0001-6593-0813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9209125$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33585821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavazos, Jacqueline G.</creatorcontrib><creatorcontrib>Phillips, P. Jonathon</creatorcontrib><creatorcontrib>Castillo, Carlos D.</creatorcontrib><creatorcontrib>O'Toole, Alice J.</creatorcontrib><title>Accuracy Comparison Across Face Recognition Algorithms: Where Are We on Measuring Race Bias?</title><title>IEEE transactions on biometrics, behavior, and identity science</title><addtitle>TBIOM</addtitle><addtitle>IEEE Trans Biom Behav Identity Sci</addtitle><description>Previous generations of face recognition algorithms differ in accuracy for images of different races (race bias). Here, we present the possible underlying factors (data-driven and scenario modeling) and methodological considerations for assessing race bias in algorithms. We discuss data-driven factors (e.g., image quality, image population statistics, and algorithm architecture), and scenario modeling factors that consider the role of the "user" of the algorithm (e.g., threshold decisions and demographic constraints). To illustrate how these issues apply, we present data from four face recognition algorithms (a previous-generation algorithm and three deep convolutional neural networks, DCNNs) for East Asian and Caucasian faces. First, dataset difficulty affected both overall recognition accuracy and race bias, such that race bias increased with item difficulty. Second, for all four algorithms, the degree of bias varied depending on the identification decision threshold. To achieve equal false accept rates (FARs), East Asian faces required higher identification thresholds than Caucasian faces, for all algorithms. Third, demographic constraints on the formulation of the distributions used in the test, impacted estimates of algorithm accuracy. We conclude that race bias needs to be measured for individual applications and we provide a checklist for measuring this bias in face recognition algorithms.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bias</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>deep convolutional neural networks</subject><subject>Demographics</subject><subject>Face recognition</subject><subject>Face recognition algorithm</subject><subject>Faces</subject><subject>Image quality</subject><subject>Modelling</subject><subject>Object recognition</subject><subject>Population statistics</subject><subject>Prediction algorithms</subject><subject>Principal component analysis</subject><subject>Race</subject><subject>race bias</subject><subject>the other-race effect</subject><issn>2637-6407</issn><issn>2637-6407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkVtrGzEQhUVpaUKaP9BCWehLX-zotruaPrQ4JjdICISUvBSELI9shd2VI3kL-ffV2q5JAhISmu8cNHMI-czomDEKJ_enV7c3Y045HQvKa17BO3LIK1GPKknr9y_uB-Q4pUdKMyohr4_kQIhSlYqzQ_JnYm0fjX0upqFdmehT6IqJjSGl4txYLO7QhkXn1354bxYh-vWyTT-KhyVGLCZ5P2CRazdoUh99tyjuBtmpN-nXJ_LBmSbh8e48Ir_Pz-6nl6Pr24ur6eR6ZKVgMCqpqhzMFDMVUueYdHPOmBQ1VNaVc2aMxJkQCLUEqWbSqblRRoIDCsoxIY7Iz63vqp-1OLfYraNp9Cr61sRnHYzXryudX-pF-KtrVQPUZTb4vjOI4anHtNatTxabxnQY-qS5VFAC8BIy-u0N-hj62OX2NhSjeeQDxbfUZpIR3f4zjOohP73JTw_56V1-WfT1ZRt7yf-0MvBlC3hE3JeBU2C8FP8AckCeNQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Cavazos, Jacqueline G.</creator><creator>Phillips, P. Jonathon</creator><creator>Castillo, Carlos D.</creator><creator>O'Toole, Alice J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6593-0813</orcidid></search><sort><creationdate>20210101</creationdate><title>Accuracy Comparison Across Face Recognition Algorithms: Where Are We on Measuring Race Bias?</title><author>Cavazos, Jacqueline G. ; Phillips, P. Jonathon ; Castillo, Carlos D. ; O'Toole, Alice J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4319-5086f9b81a6e0ff14fd21143796cf5d1aa4eb33e974948b4f8da8a49f9098f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bias</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>deep convolutional neural networks</topic><topic>Demographics</topic><topic>Face recognition</topic><topic>Face recognition algorithm</topic><topic>Faces</topic><topic>Image quality</topic><topic>Modelling</topic><topic>Object recognition</topic><topic>Population statistics</topic><topic>Prediction algorithms</topic><topic>Principal component analysis</topic><topic>Race</topic><topic>race bias</topic><topic>the other-race effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavazos, Jacqueline G.</creatorcontrib><creatorcontrib>Phillips, P. Jonathon</creatorcontrib><creatorcontrib>Castillo, Carlos D.</creatorcontrib><creatorcontrib>O'Toole, Alice J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavazos, Jacqueline G.</au><au>Phillips, P. Jonathon</au><au>Castillo, Carlos D.</au><au>O'Toole, Alice J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy Comparison Across Face Recognition Algorithms: Where Are We on Measuring Race Bias?</atitle><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle><stitle>TBIOM</stitle><addtitle>IEEE Trans Biom Behav Identity Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>3</volume><issue>1</issue><spage>101</spage><epage>111</epage><pages>101-111</pages><issn>2637-6407</issn><eissn>2637-6407</eissn><abstract>Previous generations of face recognition algorithms differ in accuracy for images of different races (race bias). Here, we present the possible underlying factors (data-driven and scenario modeling) and methodological considerations for assessing race bias in algorithms. We discuss data-driven factors (e.g., image quality, image population statistics, and algorithm architecture), and scenario modeling factors that consider the role of the "user" of the algorithm (e.g., threshold decisions and demographic constraints). To illustrate how these issues apply, we present data from four face recognition algorithms (a previous-generation algorithm and three deep convolutional neural networks, DCNNs) for East Asian and Caucasian faces. First, dataset difficulty affected both overall recognition accuracy and race bias, such that race bias increased with item difficulty. Second, for all four algorithms, the degree of bias varied depending on the identification decision threshold. To achieve equal false accept rates (FARs), East Asian faces required higher identification thresholds than Caucasian faces, for all algorithms. Third, demographic constraints on the formulation of the distributions used in the test, impacted estimates of algorithm accuracy. We conclude that race bias needs to be measured for individual applications and we provide a checklist for measuring this bias in face recognition algorithms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33585821</pmid><doi>10.1109/TBIOM.2020.3027269</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6593-0813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2637-6407
ispartof IEEE transactions on biometrics, behavior, and identity science, 2021-01, Vol.3 (1), p.101-111
issn 2637-6407
2637-6407
language eng
recordid cdi_crossref_primary_10_1109_TBIOM_2020_3027269
source IEEE Xplore (Online service)
subjects Accuracy
Algorithms
Artificial neural networks
Bias
Computational modeling
Convolutional neural networks
deep convolutional neural networks
Demographics
Face recognition
Face recognition algorithm
Faces
Image quality
Modelling
Object recognition
Population statistics
Prediction algorithms
Principal component analysis
Race
race bias
the other-race effect
title Accuracy Comparison Across Face Recognition Algorithms: Where Are We on Measuring Race Bias?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20Comparison%20Across%20Face%20Recognition%20Algorithms:%20Where%20Are%20We%20on%20Measuring%20Race%20Bias?&rft.jtitle=IEEE%20transactions%20on%20biometrics,%20behavior,%20and%20identity%20science&rft.au=Cavazos,%20Jacqueline%20G.&rft.date=2021-01-01&rft.volume=3&rft.issue=1&rft.spage=101&rft.epage=111&rft.pages=101-111&rft.issn=2637-6407&rft.eissn=2637-6407&rft_id=info:doi/10.1109/TBIOM.2020.3027269&rft_dat=%3Cproquest_cross%3E2489599259%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4319-5086f9b81a6e0ff14fd21143796cf5d1aa4eb33e974948b4f8da8a49f9098f133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489106409&rft_id=info:pmid/33585821&rft_ieee_id=9209125&rfr_iscdi=true