Loading…
On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease
Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion labor...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2013-01, Vol.60 (1), p.155-158 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853 |
container_end_page | 158 |
container_issue | 1 |
container_start_page | 155 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 60 |
creator | Mariani, Benoit Jiménez, Mayté Castro Vingerhoets, François J. G. Aminian, Kamiar |
description | Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects. |
doi_str_mv | 10.1109/TBME.2012.2227317 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBME_2012_2227317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6384887</ieee_id><sourcerecordid>1273608700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWj9-gAiSm162ZpL9SI5VaxUUBSueZMlmZ2203dXM9uC_N6XVUzIzzzswD2PHIIYAwlxMLx_GQylADqWUhYJiiw0gy3QiMwXbbCAE6MRIk-6xfaKPWKY6zXfZnlQy15EZsLfHNnmedchf0QZbzZE_Y0tdIN50gU-s77ltaz5dhta373xEhEQLbHveNfzJ9j5-ib_6fhar8Oljtj0jfu0JLeEh22nsnPBo8x6wl5vx9Oo2uX-c3F2N7hOnJPSJA5cDikIbiSpzlWlqjagAa9tUhXOuEmBQWBebJs2MdiBlpeq0kYWBeMgBO1_v_Qrd9xKpLxeeHM7ntsVuSSVEO7nQhRARhTXqQkcUsCm_gl_Y8FOCKFdWy5XVcmW13FiNmdPN-mW1wPo_8acxAidrwCPi_zhXOtW6UL-MDnuh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273608700</pqid></control><display><type>article</type><title>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</title><source>IEEE Xplore All Conference Series</source><creator>Mariani, Benoit ; Jiménez, Mayté Castro ; Vingerhoets, François J. G. ; Aminian, Kamiar</creator><creatorcontrib>Mariani, Benoit ; Jiménez, Mayté Castro ; Vingerhoets, François J. G. ; Aminian, Kamiar</creatorcontrib><description>Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2012.2227317</identifier><identifier>PMID: 23268531</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Algorithms ; Foot ; Gait - physiology ; Gait analysis ; Humans ; inertial sensors ; Legged locomotion ; Middle Aged ; Monitoring, Ambulatory - instrumentation ; Monitoring, Ambulatory - methods ; Parkinson ; Parkinson Disease - physiopathology ; Parkinson's disease ; Reproducibility of Results ; Shoes ; Signal Processing, Computer-Assisted ; spatio-temporal parameters ; System-on-a-chip ; timed up and go ; Turning ; Walking - physiology ; Wearable sensors</subject><ispartof>IEEE transactions on biomedical engineering, 2013-01, Vol.60 (1), p.155-158</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</citedby><cites>FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6384887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54530,54771,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6384887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23268531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mariani, Benoit</creatorcontrib><creatorcontrib>Jiménez, Mayté Castro</creatorcontrib><creatorcontrib>Vingerhoets, François J. G.</creatorcontrib><creatorcontrib>Aminian, Kamiar</creatorcontrib><title>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Foot</subject><subject>Gait - physiology</subject><subject>Gait analysis</subject><subject>Humans</subject><subject>inertial sensors</subject><subject>Legged locomotion</subject><subject>Middle Aged</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Monitoring, Ambulatory - methods</subject><subject>Parkinson</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Reproducibility of Results</subject><subject>Shoes</subject><subject>Signal Processing, Computer-Assisted</subject><subject>spatio-temporal parameters</subject><subject>System-on-a-chip</subject><subject>timed up and go</subject><subject>Turning</subject><subject>Walking - physiology</subject><subject>Wearable sensors</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWj9-gAiSm162ZpL9SI5VaxUUBSueZMlmZ2203dXM9uC_N6XVUzIzzzswD2PHIIYAwlxMLx_GQylADqWUhYJiiw0gy3QiMwXbbCAE6MRIk-6xfaKPWKY6zXfZnlQy15EZsLfHNnmedchf0QZbzZE_Y0tdIN50gU-s77ltaz5dhta373xEhEQLbHveNfzJ9j5-ib_6fhar8Oljtj0jfu0JLeEh22nsnPBo8x6wl5vx9Oo2uX-c3F2N7hOnJPSJA5cDikIbiSpzlWlqjagAa9tUhXOuEmBQWBebJs2MdiBlpeq0kYWBeMgBO1_v_Qrd9xKpLxeeHM7ntsVuSSVEO7nQhRARhTXqQkcUsCm_gl_Y8FOCKFdWy5XVcmW13FiNmdPN-mW1wPo_8acxAidrwCPi_zhXOtW6UL-MDnuh</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Mariani, Benoit</creator><creator>Jiménez, Mayté Castro</creator><creator>Vingerhoets, François J. G.</creator><creator>Aminian, Kamiar</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</title><author>Mariani, Benoit ; Jiménez, Mayté Castro ; Vingerhoets, François J. G. ; Aminian, Kamiar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Foot</topic><topic>Gait - physiology</topic><topic>Gait analysis</topic><topic>Humans</topic><topic>inertial sensors</topic><topic>Legged locomotion</topic><topic>Middle Aged</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Monitoring, Ambulatory - methods</topic><topic>Parkinson</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Reproducibility of Results</topic><topic>Shoes</topic><topic>Signal Processing, Computer-Assisted</topic><topic>spatio-temporal parameters</topic><topic>System-on-a-chip</topic><topic>timed up and go</topic><topic>Turning</topic><topic>Walking - physiology</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariani, Benoit</creatorcontrib><creatorcontrib>Jiménez, Mayté Castro</creatorcontrib><creatorcontrib>Vingerhoets, François J. G.</creatorcontrib><creatorcontrib>Aminian, Kamiar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mariani, Benoit</au><au>Jiménez, Mayté Castro</au><au>Vingerhoets, François J. G.</au><au>Aminian, Kamiar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2013-01</date><risdate>2013</risdate><volume>60</volume><issue>1</issue><spage>155</spage><epage>158</epage><pages>155-158</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23268531</pmid><doi>10.1109/TBME.2012.2227317</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2013-01, Vol.60 (1), p.155-158 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TBME_2012_2227317 |
source | IEEE Xplore All Conference Series |
subjects | Aged Algorithms Foot Gait - physiology Gait analysis Humans inertial sensors Legged locomotion Middle Aged Monitoring, Ambulatory - instrumentation Monitoring, Ambulatory - methods Parkinson Parkinson Disease - physiopathology Parkinson's disease Reproducibility of Results Shoes Signal Processing, Computer-Assisted spatio-temporal parameters System-on-a-chip timed up and go Turning Walking - physiology Wearable sensors |
title | On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Shoe%20Wearable%20Sensors%20for%20Gait%20and%20Turning%20Assessment%20of%20Patients%20With%20Parkinson's%20Disease&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Mariani,%20Benoit&rft.date=2013-01&rft.volume=60&rft.issue=1&rft.spage=155&rft.epage=158&rft.pages=155-158&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2012.2227317&rft_dat=%3Cproquest_CHZPO%3E1273608700%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273608700&rft_id=info:pmid/23268531&rft_ieee_id=6384887&rfr_iscdi=true |