Loading…

On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease

Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion labor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2013-01, Vol.60 (1), p.155-158
Main Authors: Mariani, Benoit, Jiménez, Mayté Castro, Vingerhoets, François J. G., Aminian, Kamiar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853
cites cdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853
container_end_page 158
container_issue 1
container_start_page 155
container_title IEEE transactions on biomedical engineering
container_volume 60
creator Mariani, Benoit
Jiménez, Mayté Castro
Vingerhoets, François J. G.
Aminian, Kamiar
description Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.
doi_str_mv 10.1109/TBME.2012.2227317
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBME_2012_2227317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6384887</ieee_id><sourcerecordid>1273608700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWj9-gAiSm162ZpL9SI5VaxUUBSueZMlmZ2203dXM9uC_N6XVUzIzzzswD2PHIIYAwlxMLx_GQylADqWUhYJiiw0gy3QiMwXbbCAE6MRIk-6xfaKPWKY6zXfZnlQy15EZsLfHNnmedchf0QZbzZE_Y0tdIN50gU-s77ltaz5dhta373xEhEQLbHveNfzJ9j5-ib_6fhar8Oljtj0jfu0JLeEh22nsnPBo8x6wl5vx9Oo2uX-c3F2N7hOnJPSJA5cDikIbiSpzlWlqjagAa9tUhXOuEmBQWBebJs2MdiBlpeq0kYWBeMgBO1_v_Qrd9xKpLxeeHM7ntsVuSSVEO7nQhRARhTXqQkcUsCm_gl_Y8FOCKFdWy5XVcmW13FiNmdPN-mW1wPo_8acxAidrwCPi_zhXOtW6UL-MDnuh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273608700</pqid></control><display><type>article</type><title>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</title><source>IEEE Xplore All Conference Series</source><creator>Mariani, Benoit ; Jiménez, Mayté Castro ; Vingerhoets, François J. G. ; Aminian, Kamiar</creator><creatorcontrib>Mariani, Benoit ; Jiménez, Mayté Castro ; Vingerhoets, François J. G. ; Aminian, Kamiar</creatorcontrib><description>Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2012.2227317</identifier><identifier>PMID: 23268531</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aged ; Algorithms ; Foot ; Gait - physiology ; Gait analysis ; Humans ; inertial sensors ; Legged locomotion ; Middle Aged ; Monitoring, Ambulatory - instrumentation ; Monitoring, Ambulatory - methods ; Parkinson ; Parkinson Disease - physiopathology ; Parkinson's disease ; Reproducibility of Results ; Shoes ; Signal Processing, Computer-Assisted ; spatio-temporal parameters ; System-on-a-chip ; timed up and go ; Turning ; Walking - physiology ; Wearable sensors</subject><ispartof>IEEE transactions on biomedical engineering, 2013-01, Vol.60 (1), p.155-158</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</citedby><cites>FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6384887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54530,54771,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6384887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23268531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mariani, Benoit</creatorcontrib><creatorcontrib>Jiménez, Mayté Castro</creatorcontrib><creatorcontrib>Vingerhoets, François J. G.</creatorcontrib><creatorcontrib>Aminian, Kamiar</creatorcontrib><title>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Foot</subject><subject>Gait - physiology</subject><subject>Gait analysis</subject><subject>Humans</subject><subject>inertial sensors</subject><subject>Legged locomotion</subject><subject>Middle Aged</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Monitoring, Ambulatory - methods</subject><subject>Parkinson</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Reproducibility of Results</subject><subject>Shoes</subject><subject>Signal Processing, Computer-Assisted</subject><subject>spatio-temporal parameters</subject><subject>System-on-a-chip</subject><subject>timed up and go</subject><subject>Turning</subject><subject>Walking - physiology</subject><subject>Wearable sensors</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWj9-gAiSm162ZpL9SI5VaxUUBSueZMlmZ2203dXM9uC_N6XVUzIzzzswD2PHIIYAwlxMLx_GQylADqWUhYJiiw0gy3QiMwXbbCAE6MRIk-6xfaKPWKY6zXfZnlQy15EZsLfHNnmedchf0QZbzZE_Y0tdIN50gU-s77ltaz5dhta373xEhEQLbHveNfzJ9j5-ib_6fhar8Oljtj0jfu0JLeEh22nsnPBo8x6wl5vx9Oo2uX-c3F2N7hOnJPSJA5cDikIbiSpzlWlqjagAa9tUhXOuEmBQWBebJs2MdiBlpeq0kYWBeMgBO1_v_Qrd9xKpLxeeHM7ntsVuSSVEO7nQhRARhTXqQkcUsCm_gl_Y8FOCKFdWy5XVcmW13FiNmdPN-mW1wPo_8acxAidrwCPi_zhXOtW6UL-MDnuh</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Mariani, Benoit</creator><creator>Jiménez, Mayté Castro</creator><creator>Vingerhoets, François J. G.</creator><creator>Aminian, Kamiar</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</title><author>Mariani, Benoit ; Jiménez, Mayté Castro ; Vingerhoets, François J. G. ; Aminian, Kamiar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Foot</topic><topic>Gait - physiology</topic><topic>Gait analysis</topic><topic>Humans</topic><topic>inertial sensors</topic><topic>Legged locomotion</topic><topic>Middle Aged</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Monitoring, Ambulatory - methods</topic><topic>Parkinson</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Reproducibility of Results</topic><topic>Shoes</topic><topic>Signal Processing, Computer-Assisted</topic><topic>spatio-temporal parameters</topic><topic>System-on-a-chip</topic><topic>timed up and go</topic><topic>Turning</topic><topic>Walking - physiology</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariani, Benoit</creatorcontrib><creatorcontrib>Jiménez, Mayté Castro</creatorcontrib><creatorcontrib>Vingerhoets, François J. G.</creatorcontrib><creatorcontrib>Aminian, Kamiar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mariani, Benoit</au><au>Jiménez, Mayté Castro</au><au>Vingerhoets, François J. G.</au><au>Aminian, Kamiar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2013-01</date><risdate>2013</risdate><volume>60</volume><issue>1</issue><spage>155</spage><epage>158</epage><pages>155-158</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Assessment of locomotion through simple tests such as timed up and go (TUG) or walking trials can provide valuable information for the evaluation of treatment and the early diagnosis of people with Parkinson's disease (PD). Common methods used in clinics are either based on complex motion laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an innovative technology based on wearable sensors on-shoe and processing algorithm, which provides outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on ten PD patients and ten age-matched elderly subjects indicate an accuracy ± precision of 2.8 ± 2.4 cm/s and 1.3 ± 3.0 cm for stride velocity and stride length estimation compared to optical motion capture, with the advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, the use of novel spatio-temporal parameters, including turning, swing width, path length, and their intercycle variability, was also validated and showed interesting tendencies for discriminating patients in ON and OFF states and control subjects.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23268531</pmid><doi>10.1109/TBME.2012.2227317</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2013-01, Vol.60 (1), p.155-158
issn 0018-9294
1558-2531
language eng
recordid cdi_crossref_primary_10_1109_TBME_2012_2227317
source IEEE Xplore All Conference Series
subjects Aged
Algorithms
Foot
Gait - physiology
Gait analysis
Humans
inertial sensors
Legged locomotion
Middle Aged
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Parkinson
Parkinson Disease - physiopathology
Parkinson's disease
Reproducibility of Results
Shoes
Signal Processing, Computer-Assisted
spatio-temporal parameters
System-on-a-chip
timed up and go
Turning
Walking - physiology
Wearable sensors
title On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Shoe%20Wearable%20Sensors%20for%20Gait%20and%20Turning%20Assessment%20of%20Patients%20With%20Parkinson's%20Disease&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Mariani,%20Benoit&rft.date=2013-01&rft.volume=60&rft.issue=1&rft.spage=155&rft.epage=158&rft.pages=155-158&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2012.2227317&rft_dat=%3Cproquest_CHZPO%3E1273608700%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-c1c61e07892e35cb9fd8ee31edafb7cccb019e0acee394598c122b3d4f2791853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1273608700&rft_id=info:pmid/23268531&rft_ieee_id=6384887&rfr_iscdi=true