Loading…
Portable System for Time-Domain Diffuse Correlation Spectroscopy
We introduce a portable system for clinical studies based on time-domain diffuse correlation spectroscopy (DCS). After evaluating different lasers and detectors, the final system is based on a pulsed laser with about 550 ps pulsewidth, a coherence length of 38 mm, and two types of single-photon aval...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2019-11, Vol.66 (11), p.3014-3025 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a portable system for clinical studies based on time-domain diffuse correlation spectroscopy (DCS). After evaluating different lasers and detectors, the final system is based on a pulsed laser with about 550 ps pulsewidth, a coherence length of 38 mm, and two types of single-photon avalanche diodes (SPAD). The higher efficiency of the red-enhanced SPAD maximizes detection of the collected light, increasing the signal-to-noise ratio, while the better timing response of the CMOS SPAD optimizes the selection of late photons and increases spatial resolution. We discuss component selection and performance, and we present a full characterization of the system, measurement stability, a phantom-based validation study, and preliminary in vivo results collected from the forearms and the foreheads of four healthy subjects. With this system, we are able to resolve blood flow changes 1 cm below the skin surface with improved depth sensitivity and spatial resolution with respect to continuous wave DCS. |
---|---|
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2019.2899762 |