Loading…

Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca 2+ Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices

This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I ) in Guinea pig ventricular cardiomyocytes. Whole-cell patch-clamp recordings were employed to examine l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2024-06, Vol.71 (6), p.1980-1992
Main Authors: Rienmuller, Theresa, Shrestha, Niroj, Polz, Mathias, Stoppacher, Sara, Ziesel, Daniel, Migliaccio, Ludovico, Pelzmann, Brigitte, Lang, Petra, Zorn-Pauly, Klaus, Langthaler, Sonja, Opancar, Aleksandar, Baumgartner, Christian, Ucal, Muammer, Schindl, Rainer, Derek, Vedran, Scheruebel, Susanne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c659-d19ce35bfc4956c70623c9dc877fd844775719e664a781172b3162b50bb5ae9a3
container_end_page 1992
container_issue 6
container_start_page 1980
container_title IEEE transactions on biomedical engineering
container_volume 71
creator Rienmuller, Theresa
Shrestha, Niroj
Polz, Mathias
Stoppacher, Sara
Ziesel, Daniel
Migliaccio, Ludovico
Pelzmann, Brigitte
Lang, Petra
Zorn-Pauly, Klaus
Langthaler, Sonja
Opancar, Aleksandar
Baumgartner, Christian
Ucal, Muammer
Schindl, Rainer
Derek, Vedran
Scheruebel, Susanne
description This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I ) in Guinea pig ventricular cardiomyocytes. Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated I activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. Light pulses activated I , with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca channel blocker, nifedipine. Light-triggered I inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. OEPC-mediated activation of I demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of I and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.
doi_str_mv 10.1109/TBME.2024.3358240
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBME_2024_3358240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38498749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659-d19ce35bfc4956c70623c9dc877fd844775719e664a781172b3162b50bb5ae9a3</originalsourceid><addsrcrecordid>eNo9kE1u2zAQRomiQe24OUA3wewLOfwVye5cx0kNuE2AuNkKFEXZDGQyEGWjvlGPWal2shp8g3kzg4fQF4KnhGB9s_7-czGlmPIpY0JRjj-gMRFCZVQw8hGNMSYq01TzEbpM6aWPXPH8ExoxxbWSXI_R36etqyofNrDym20HMcDctJU3FhZ_rO9M52P4BssAz75rI5hQDeHJN95GmAXTHJNPEGv41Y8eXE8D_QrzrQnBNTCzffP_DvAB7vc-OAOPfnM6EnfHaI-dS_A7DS88tBsTvIXHbeziITad6cOtO3jr0md0UZsmuatznaD13WI9_5GtHu6X89kqs7nQWUW0dUyUteVa5FbinDKrK6ukrCvFuZRCEu3ynBupCJG0ZCSnpcBlKYzThk0QOa21bUypdXXx2vqdaY8FwcUgvRikF4P04iy9Z65PzOu-3LnqnXizzP4BHnZ-JA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca 2+ Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices</title><source>IEEE Xplore All Conference Series</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Rienmuller, Theresa ; Shrestha, Niroj ; Polz, Mathias ; Stoppacher, Sara ; Ziesel, Daniel ; Migliaccio, Ludovico ; Pelzmann, Brigitte ; Lang, Petra ; Zorn-Pauly, Klaus ; Langthaler, Sonja ; Opancar, Aleksandar ; Baumgartner, Christian ; Ucal, Muammer ; Schindl, Rainer ; Derek, Vedran ; Scheruebel, Susanne</creator><creatorcontrib>Rienmuller, Theresa ; Shrestha, Niroj ; Polz, Mathias ; Stoppacher, Sara ; Ziesel, Daniel ; Migliaccio, Ludovico ; Pelzmann, Brigitte ; Lang, Petra ; Zorn-Pauly, Klaus ; Langthaler, Sonja ; Opancar, Aleksandar ; Baumgartner, Christian ; Ucal, Muammer ; Schindl, Rainer ; Derek, Vedran ; Scheruebel, Susanne</creatorcontrib><description>This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I ) in Guinea pig ventricular cardiomyocytes. Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated I activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. Light pulses activated I , with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca channel blocker, nifedipine. Light-triggered I inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. OEPC-mediated activation of I demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of I and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2024.3358240</identifier><identifier>PMID: 38498749</identifier><language>eng</language><publisher>United States</publisher><subject>Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Calcium Channels, L-Type - metabolism ; Computer Simulation ; Guinea Pigs ; Light ; Models, Cardiovascular ; Myocytes, Cardiac - physiology ; Patch-Clamp Techniques</subject><ispartof>IEEE transactions on biomedical engineering, 2024-06, Vol.71 (6), p.1980-1992</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c659-d19ce35bfc4956c70623c9dc877fd844775719e664a781172b3162b50bb5ae9a3</cites><orcidid>0000-0001-9507-6865 ; 0000-0001-5139-3850 ; 0000-0002-9623-106X ; 0000-0003-0374-8877 ; 0000-0002-3763-5195 ; 0000-0001-5160-4910 ; 0000-0003-3471-1110 ; 0000-0003-0896-8887 ; 0000-0003-1939-4890 ; 0000-0001-9118-8691 ; 0000-0002-0692-3098 ; 0000-0002-3782-5829 ; 0000-0002-4824-9919 ; 0000-0001-8887-2097 ; 0009-0004-4376-5748 ; 0000-0003-2578-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38498749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rienmuller, Theresa</creatorcontrib><creatorcontrib>Shrestha, Niroj</creatorcontrib><creatorcontrib>Polz, Mathias</creatorcontrib><creatorcontrib>Stoppacher, Sara</creatorcontrib><creatorcontrib>Ziesel, Daniel</creatorcontrib><creatorcontrib>Migliaccio, Ludovico</creatorcontrib><creatorcontrib>Pelzmann, Brigitte</creatorcontrib><creatorcontrib>Lang, Petra</creatorcontrib><creatorcontrib>Zorn-Pauly, Klaus</creatorcontrib><creatorcontrib>Langthaler, Sonja</creatorcontrib><creatorcontrib>Opancar, Aleksandar</creatorcontrib><creatorcontrib>Baumgartner, Christian</creatorcontrib><creatorcontrib>Ucal, Muammer</creatorcontrib><creatorcontrib>Schindl, Rainer</creatorcontrib><creatorcontrib>Derek, Vedran</creatorcontrib><creatorcontrib>Scheruebel, Susanne</creatorcontrib><title>Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca 2+ Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices</title><title>IEEE transactions on biomedical engineering</title><addtitle>IEEE Trans Biomed Eng</addtitle><description>This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I ) in Guinea pig ventricular cardiomyocytes. Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated I activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. Light pulses activated I , with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca channel blocker, nifedipine. Light-triggered I inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. OEPC-mediated activation of I demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of I and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.</description><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Computer Simulation</subject><subject>Guinea Pigs</subject><subject>Light</subject><subject>Models, Cardiovascular</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Patch-Clamp Techniques</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1u2zAQRomiQe24OUA3wewLOfwVye5cx0kNuE2AuNkKFEXZDGQyEGWjvlGPWal2shp8g3kzg4fQF4KnhGB9s_7-czGlmPIpY0JRjj-gMRFCZVQw8hGNMSYq01TzEbpM6aWPXPH8ExoxxbWSXI_R36etqyofNrDym20HMcDctJU3FhZ_rO9M52P4BssAz75rI5hQDeHJN95GmAXTHJNPEGv41Y8eXE8D_QrzrQnBNTCzffP_DvAB7vc-OAOPfnM6EnfHaI-dS_A7DS88tBsTvIXHbeziITad6cOtO3jr0md0UZsmuatznaD13WI9_5GtHu6X89kqs7nQWUW0dUyUteVa5FbinDKrK6ukrCvFuZRCEu3ynBupCJG0ZCSnpcBlKYzThk0QOa21bUypdXXx2vqdaY8FwcUgvRikF4P04iy9Z65PzOu-3LnqnXizzP4BHnZ-JA</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Rienmuller, Theresa</creator><creator>Shrestha, Niroj</creator><creator>Polz, Mathias</creator><creator>Stoppacher, Sara</creator><creator>Ziesel, Daniel</creator><creator>Migliaccio, Ludovico</creator><creator>Pelzmann, Brigitte</creator><creator>Lang, Petra</creator><creator>Zorn-Pauly, Klaus</creator><creator>Langthaler, Sonja</creator><creator>Opancar, Aleksandar</creator><creator>Baumgartner, Christian</creator><creator>Ucal, Muammer</creator><creator>Schindl, Rainer</creator><creator>Derek, Vedran</creator><creator>Scheruebel, Susanne</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9507-6865</orcidid><orcidid>https://orcid.org/0000-0001-5139-3850</orcidid><orcidid>https://orcid.org/0000-0002-9623-106X</orcidid><orcidid>https://orcid.org/0000-0003-0374-8877</orcidid><orcidid>https://orcid.org/0000-0002-3763-5195</orcidid><orcidid>https://orcid.org/0000-0001-5160-4910</orcidid><orcidid>https://orcid.org/0000-0003-3471-1110</orcidid><orcidid>https://orcid.org/0000-0003-0896-8887</orcidid><orcidid>https://orcid.org/0000-0003-1939-4890</orcidid><orcidid>https://orcid.org/0000-0001-9118-8691</orcidid><orcidid>https://orcid.org/0000-0002-0692-3098</orcidid><orcidid>https://orcid.org/0000-0002-3782-5829</orcidid><orcidid>https://orcid.org/0000-0002-4824-9919</orcidid><orcidid>https://orcid.org/0000-0001-8887-2097</orcidid><orcidid>https://orcid.org/0009-0004-4376-5748</orcidid><orcidid>https://orcid.org/0000-0003-2578-3833</orcidid></search><sort><creationdate>202406</creationdate><title>Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca 2+ Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices</title><author>Rienmuller, Theresa ; Shrestha, Niroj ; Polz, Mathias ; Stoppacher, Sara ; Ziesel, Daniel ; Migliaccio, Ludovico ; Pelzmann, Brigitte ; Lang, Petra ; Zorn-Pauly, Klaus ; Langthaler, Sonja ; Opancar, Aleksandar ; Baumgartner, Christian ; Ucal, Muammer ; Schindl, Rainer ; Derek, Vedran ; Scheruebel, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659-d19ce35bfc4956c70623c9dc877fd844775719e664a781172b3162b50bb5ae9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Computer Simulation</topic><topic>Guinea Pigs</topic><topic>Light</topic><topic>Models, Cardiovascular</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Patch-Clamp Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rienmuller, Theresa</creatorcontrib><creatorcontrib>Shrestha, Niroj</creatorcontrib><creatorcontrib>Polz, Mathias</creatorcontrib><creatorcontrib>Stoppacher, Sara</creatorcontrib><creatorcontrib>Ziesel, Daniel</creatorcontrib><creatorcontrib>Migliaccio, Ludovico</creatorcontrib><creatorcontrib>Pelzmann, Brigitte</creatorcontrib><creatorcontrib>Lang, Petra</creatorcontrib><creatorcontrib>Zorn-Pauly, Klaus</creatorcontrib><creatorcontrib>Langthaler, Sonja</creatorcontrib><creatorcontrib>Opancar, Aleksandar</creatorcontrib><creatorcontrib>Baumgartner, Christian</creatorcontrib><creatorcontrib>Ucal, Muammer</creatorcontrib><creatorcontrib>Schindl, Rainer</creatorcontrib><creatorcontrib>Derek, Vedran</creatorcontrib><creatorcontrib>Scheruebel, Susanne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rienmuller, Theresa</au><au>Shrestha, Niroj</au><au>Polz, Mathias</au><au>Stoppacher, Sara</au><au>Ziesel, Daniel</au><au>Migliaccio, Ludovico</au><au>Pelzmann, Brigitte</au><au>Lang, Petra</au><au>Zorn-Pauly, Klaus</au><au>Langthaler, Sonja</au><au>Opancar, Aleksandar</au><au>Baumgartner, Christian</au><au>Ucal, Muammer</au><au>Schindl, Rainer</au><au>Derek, Vedran</au><au>Scheruebel, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca 2+ Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2024-06</date><risdate>2024</risdate><volume>71</volume><issue>6</issue><spage>1980</spage><epage>1992</epage><pages>1980-1992</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><abstract>This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I ) in Guinea pig ventricular cardiomyocytes. Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated I activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. Light pulses activated I , with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca channel blocker, nifedipine. Light-triggered I inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. OEPC-mediated activation of I demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of I and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.</abstract><cop>United States</cop><pmid>38498749</pmid><doi>10.1109/TBME.2024.3358240</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9507-6865</orcidid><orcidid>https://orcid.org/0000-0001-5139-3850</orcidid><orcidid>https://orcid.org/0000-0002-9623-106X</orcidid><orcidid>https://orcid.org/0000-0003-0374-8877</orcidid><orcidid>https://orcid.org/0000-0002-3763-5195</orcidid><orcidid>https://orcid.org/0000-0001-5160-4910</orcidid><orcidid>https://orcid.org/0000-0003-3471-1110</orcidid><orcidid>https://orcid.org/0000-0003-0896-8887</orcidid><orcidid>https://orcid.org/0000-0003-1939-4890</orcidid><orcidid>https://orcid.org/0000-0001-9118-8691</orcidid><orcidid>https://orcid.org/0000-0002-0692-3098</orcidid><orcidid>https://orcid.org/0000-0002-3782-5829</orcidid><orcidid>https://orcid.org/0000-0002-4824-9919</orcidid><orcidid>https://orcid.org/0000-0001-8887-2097</orcidid><orcidid>https://orcid.org/0009-0004-4376-5748</orcidid><orcidid>https://orcid.org/0000-0003-2578-3833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2024-06, Vol.71 (6), p.1980-1992
issn 0018-9294
1558-2531
language eng
recordid cdi_crossref_primary_10_1109_TBME_2024_3358240
source IEEE Xplore All Conference Series; IEEE Electronic Library (IEL) Journals
subjects Action Potentials - physiology
Action Potentials - radiation effects
Animals
Calcium Channels, L-Type - metabolism
Computer Simulation
Guinea Pigs
Light
Models, Cardiovascular
Myocytes, Cardiac - physiology
Patch-Clamp Techniques
title Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca 2+ Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shedding%20Light%20on%20Cardiac%20Excitation:%20In%20Vitro%20and%20In%20Silico%20Analysis%20of%20Native%20Ca%202+%20Channel%20Activation%20in%20Guinea%20Pig%20Cardiomyocytes%20Using%20Organic%20Photovoltaic%20Devices&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Rienmuller,%20Theresa&rft.date=2024-06&rft.volume=71&rft.issue=6&rft.spage=1980&rft.epage=1992&rft.pages=1980-1992&rft.issn=0018-9294&rft.eissn=1558-2531&rft_id=info:doi/10.1109/TBME.2024.3358240&rft_dat=%3Cpubmed_cross%3E38498749%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c659-d19ce35bfc4956c70623c9dc877fd844775719e664a781172b3162b50bb5ae9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38498749&rfr_iscdi=true