Loading…
High-Density and High-Coverage Composite Atrial Activation Maps: An In-Silico Validation Study
Objective: Repetitive atrial activation patterns (RAAPs) during complex atrial tachycardia could be associated with localized mechanisms that can be targeted. Clinically available electroanatomical mapping systems are limited by either the spatial coverage or electrode density of the mapping cathete...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2025-01, Vol.72 (1), p.79-89 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective: Repetitive atrial activation patterns (RAAPs) during complex atrial tachycardia could be associated with localized mechanisms that can be targeted. Clinically available electroanatomical mapping systems are limited by either the spatial coverage or electrode density of the mapping catheters, preventing the adequate visualization of transiently occurring RAAPs. This work proposes a technique to overcome this shortcoming by stitching spatially overlapping conduction patterns together to a larger image- called a composite map. Methods: Simulated stable mechanisms and meandering reentries are sequentially mapped (4 Ă— 4 grid, 3 mm spacing) and then reconstructed back to the original sizes with the proposed recurrence plot-based algorithm. Results: The reconstruction of single linear waves presents minimal errors (local activation time (LAT) difference: 3.2 [1.6-4.9] ms, conduction direction difference: 5.2 [2.3-8.0] degrees). Errors significantly increase (p |
---|---|
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2024.3439502 |