Loading…

Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage

Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2012-09, Vol.31 (9), p.1428-1438
Main Author: Pomeranz, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553
cites cdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553
container_end_page 1438
container_issue 9
container_start_page 1428
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 31
creator Pomeranz, I.
description Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations.
doi_str_mv 10.1109/TCAD.2012.2193583
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2012_2193583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6269975</ieee_id><sourcerecordid>2741258501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsFZ_gHhZ8OIldWc3m02OJVotVFSoely2m4mmpEndTYT-e7ekePA0j-F7j5lHyCWwCQDLbpf59G7CGfAJh0zIVByRURAqikHCMRkxrtKIMcVOyZn3a8Ygljwbkdenvu4qu7M10iX6ztOPqvuiedv4zjQdfXHVxrgdnTfbvqPvaLvWeVq2LmysQ-OxoDMTMoLlB535xHNyUpra48Vhjsnb7H6ZP0aL54d5Pl1EVvCki1ZqVaRYouDIZZlakRpWWr6KpSp4WaRMJonimYktA1AK4jQRqIIqkQGTUozJzZC7de13H07Xm8pbrGvTYNt7DSASkUrF9-j1P3Td9q4J12lgIpZMZCACBQNlXeu9w1Jvh-cDpPcl633Jel-yPpQcPFeDp0LEPz7hSZYpKX4Bgf52tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034503913</pqid></control><display><type>article</type><title>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pomeranz, I.</creator><creatorcontrib>Pomeranz, I.</creatorcontrib><description>Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2012.2193583</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bridging faults ; Circuit faults ; Clocks ; Delay ; Design engineering ; Electronics industry ; Fault detection ; Faults ; Flexibility ; Indexes ; Integrated circuit modeling ; Mathematical analysis ; multicycle tests ; scan circuits ; single stuck-at faults ; Target detection ; Test methods ; Test sets ; transition faults ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2012-09, Vol.31 (9), p.1428-1438</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</citedby><cites>FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6269975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Pomeranz, I.</creatorcontrib><title>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations.</description><subject>Bridging faults</subject><subject>Circuit faults</subject><subject>Clocks</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Electronics industry</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Flexibility</subject><subject>Indexes</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>multicycle tests</subject><subject>scan circuits</subject><subject>single stuck-at faults</subject><subject>Target detection</subject><subject>Test methods</subject><subject>Test sets</subject><subject>transition faults</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLw0AQhRdRsFZ_gHhZ8OIldWc3m02OJVotVFSoely2m4mmpEndTYT-e7ekePA0j-F7j5lHyCWwCQDLbpf59G7CGfAJh0zIVByRURAqikHCMRkxrtKIMcVOyZn3a8Ygljwbkdenvu4qu7M10iX6ztOPqvuiedv4zjQdfXHVxrgdnTfbvqPvaLvWeVq2LmysQ-OxoDMTMoLlB535xHNyUpra48Vhjsnb7H6ZP0aL54d5Pl1EVvCki1ZqVaRYouDIZZlakRpWWr6KpSp4WaRMJonimYktA1AK4jQRqIIqkQGTUozJzZC7de13H07Xm8pbrGvTYNt7DSASkUrF9-j1P3Td9q4J12lgIpZMZCACBQNlXeu9w1Jvh-cDpPcl633Jel-yPpQcPFeDp0LEPz7hSZYpKX4Bgf52tg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Pomeranz, I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</title><author>Pomeranz, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bridging faults</topic><topic>Circuit faults</topic><topic>Clocks</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Electronics industry</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Flexibility</topic><topic>Indexes</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>multicycle tests</topic><topic>scan circuits</topic><topic>single stuck-at faults</topic><topic>Target detection</topic><topic>Test methods</topic><topic>Test sets</topic><topic>transition faults</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomeranz, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomeranz, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>31</volume><issue>9</issue><spage>1428</spage><epage>1438</epage><pages>1428-1438</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2012.2193583</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2012-09, Vol.31 (9), p.1428-1438
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_TCAD_2012_2193583
source IEEE Electronic Library (IEL) Journals
subjects Bridging faults
Circuit faults
Clocks
Delay
Design engineering
Electronics industry
Fault detection
Faults
Flexibility
Indexes
Integrated circuit modeling
Mathematical analysis
multicycle tests
scan circuits
single stuck-at faults
Target detection
Test methods
Test sets
transition faults
Vectors
Vectors (mathematics)
title Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicycle%20Tests%20With%20Constant%20Primary%20Input%20Vectors%20for%20Increased%20Fault%20Coverage&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Pomeranz,%20I.&rft.date=2012-09-01&rft.volume=31&rft.issue=9&rft.spage=1428&rft.epage=1438&rft.pages=1428-1438&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2012.2193583&rft_dat=%3Cproquest_cross%3E2741258501%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1034503913&rft_id=info:pmid/&rft_ieee_id=6269975&rfr_iscdi=true