Loading…
Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage
Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 2012-09, Vol.31 (9), p.1428-1438 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553 |
container_end_page | 1438 |
container_issue | 9 |
container_start_page | 1428 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 31 |
creator | Pomeranz, I. |
description | Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations. |
doi_str_mv | 10.1109/TCAD.2012.2193583 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2012_2193583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6269975</ieee_id><sourcerecordid>2741258501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRsFZ_gHhZ8OIldWc3m02OJVotVFSoely2m4mmpEndTYT-e7ekePA0j-F7j5lHyCWwCQDLbpf59G7CGfAJh0zIVByRURAqikHCMRkxrtKIMcVOyZn3a8Ygljwbkdenvu4qu7M10iX6ztOPqvuiedv4zjQdfXHVxrgdnTfbvqPvaLvWeVq2LmysQ-OxoDMTMoLlB535xHNyUpra48Vhjsnb7H6ZP0aL54d5Pl1EVvCki1ZqVaRYouDIZZlakRpWWr6KpSp4WaRMJonimYktA1AK4jQRqIIqkQGTUozJzZC7de13H07Xm8pbrGvTYNt7DSASkUrF9-j1P3Td9q4J12lgIpZMZCACBQNlXeu9w1Jvh-cDpPcl633Jel-yPpQcPFeDp0LEPz7hSZYpKX4Bgf52tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034503913</pqid></control><display><type>article</type><title>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pomeranz, I.</creator><creatorcontrib>Pomeranz, I.</creatorcontrib><description>Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2012.2193583</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bridging faults ; Circuit faults ; Clocks ; Delay ; Design engineering ; Electronics industry ; Fault detection ; Faults ; Flexibility ; Indexes ; Integrated circuit modeling ; Mathematical analysis ; multicycle tests ; scan circuits ; single stuck-at faults ; Target detection ; Test methods ; Test sets ; transition faults ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2012-09, Vol.31 (9), p.1428-1438</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</citedby><cites>FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6269975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Pomeranz, I.</creatorcontrib><title>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations.</description><subject>Bridging faults</subject><subject>Circuit faults</subject><subject>Clocks</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Electronics industry</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Flexibility</subject><subject>Indexes</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>multicycle tests</subject><subject>scan circuits</subject><subject>single stuck-at faults</subject><subject>Target detection</subject><subject>Test methods</subject><subject>Test sets</subject><subject>transition faults</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLw0AQhRdRsFZ_gHhZ8OIldWc3m02OJVotVFSoely2m4mmpEndTYT-e7ekePA0j-F7j5lHyCWwCQDLbpf59G7CGfAJh0zIVByRURAqikHCMRkxrtKIMcVOyZn3a8Ygljwbkdenvu4qu7M10iX6ztOPqvuiedv4zjQdfXHVxrgdnTfbvqPvaLvWeVq2LmysQ-OxoDMTMoLlB535xHNyUpra48Vhjsnb7H6ZP0aL54d5Pl1EVvCki1ZqVaRYouDIZZlakRpWWr6KpSp4WaRMJonimYktA1AK4jQRqIIqkQGTUozJzZC7de13H07Xm8pbrGvTYNt7DSASkUrF9-j1P3Td9q4J12lgIpZMZCACBQNlXeu9w1Jvh-cDpPcl633Jel-yPpQcPFeDp0LEPz7hSZYpKX4Bgf52tg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Pomeranz, I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</title><author>Pomeranz, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bridging faults</topic><topic>Circuit faults</topic><topic>Clocks</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Electronics industry</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Flexibility</topic><topic>Indexes</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>multicycle tests</topic><topic>scan circuits</topic><topic>single stuck-at faults</topic><topic>Target detection</topic><topic>Test methods</topic><topic>Test sets</topic><topic>transition faults</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomeranz, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomeranz, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>31</volume><issue>9</issue><spage>1428</spage><epage>1438</epage><pages>1428-1438</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Test generation procedures for n -detection test sets improve the quality of a test set by adding tests that increase the numbers of detections of target faults. A different approach to n -detection test generation increases the numbers of detections of target faults within the bounds of the number of tests of a single-detection test set. Multicycle tests provide the flexibility of improving the quality of a test set by increasing the number of clock cycles in each test, without increasing the number of tests. Improved test quality is thus achieved with limited increases in test application time and test data volume due to the larger numbers of clock cycles in each test. This paper describes a procedure that starts from a compact one-detection single-cycle test set for single stuck-at faults and produces a multicycle test set with the same number of tests, but increased numbers of clock cycles and improved test quality. The procedure uses only one-detection fault simulation of single stuck-at faults. A similar procedure is applied starting from a two-cycle test set and considering transition faults. The procedures produce tests with constant primary input vectors to accommodate tester limitations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2012.2193583</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2012-09, Vol.31 (9), p.1428-1438 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAD_2012_2193583 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bridging faults Circuit faults Clocks Delay Design engineering Electronics industry Fault detection Faults Flexibility Indexes Integrated circuit modeling Mathematical analysis multicycle tests scan circuits single stuck-at faults Target detection Test methods Test sets transition faults Vectors Vectors (mathematics) |
title | Multicycle Tests With Constant Primary Input Vectors for Increased Fault Coverage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicycle%20Tests%20With%20Constant%20Primary%20Input%20Vectors%20for%20Increased%20Fault%20Coverage&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Pomeranz,%20I.&rft.date=2012-09-01&rft.volume=31&rft.issue=9&rft.spage=1428&rft.epage=1438&rft.pages=1428-1438&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2012.2193583&rft_dat=%3Cproquest_cross%3E2741258501%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-b7bd8efe32e25f8c38a0fc2b457d2fd80566729a4c0117714863e7177fe010553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1034503913&rft_id=info:pmid/&rft_ieee_id=6269975&rfr_iscdi=true |