Loading…

On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement

Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2021-12, Vol.40 (12), p.2522-2527
Main Authors: Reddy, Gaurav Rajavendra, Xanthopoulos, Constantinos, Makris, Yiorgos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553
cites cdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553
container_end_page 2527
container_issue 12
container_start_page 2522
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 40
creator Reddy, Gaurav Rajavendra
Xanthopoulos, Constantinos
Makris, Yiorgos
description Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than 3\times reduction in classification error in comparison to the state-of-the-art.
doi_str_mv 10.1109/TCAD.2021.3049285
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2021_3049285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9313011</ieee_id><sourcerecordid>2599203660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AONlE8-LM_3Y3R4RUEhIMAHPTbe0sES62BYT_r1LMJ5mDs_7zuQh5BFhgAjyZTUajgcUKA4YcEkrcUV6KFmZcxR4TXpAyyoHKOGW3MW4A0AuqOyR5cJns_0htD-N32TTNsVDm7KxTdakpvXZahva42abLU8-bW1qTPahU7LB56862nU21knX3ZZN_FZ7Y_fWp3ty4_RXtA9_s08-3yar0TSfL95no-E8N1SylNeuFtYYU0mQdF2XIDXFkmPtKrBg0CFwVxYlE5rX68o5xjkzqHVRlNQKwfrk-dLbvf99tDGpXXsMvjupqJCSAisK6Ci8UCa0MQbr1CE0ex1OCkGd3amzO3V2p_7cdZmnS6ax1v7zkiEDRPYLq0RqgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599203660</pqid></control><display><type>article</type><title>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Reddy, Gaurav Rajavendra ; Xanthopoulos, Constantinos ; Makris, Yiorgos</creator><creatorcontrib>Reddy, Gaurav Rajavendra ; Xanthopoulos, Constantinos ; Makris, Yiorgos</creatorcontrib><description>Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3\times &lt;/tex-math&gt;&lt;/inline-formula&gt; reduction in classification error in comparison to the state-of-the-art.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3049285</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Database enhancement ; Design defects ; design for manufacturability ; Design for manufacture ; Design of experiments ; False alarms ; Feature extraction ; Image edge detection ; Layout ; lithographic hotspot detection ; Lithography ; Machine learning ; Pattern formation ; Pattern generation ; Pattern matching ; physical design ; synthetic pattern generation ; Transforms</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2021-12, Vol.40 (12), p.2522-2527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</citedby><cites>FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</cites><orcidid>0000-0002-1259-4913 ; 0000-0002-4322-0068 ; 0000-0002-7815-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9313011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Reddy, Gaurav Rajavendra</creatorcontrib><creatorcontrib>Xanthopoulos, Constantinos</creatorcontrib><creatorcontrib>Makris, Yiorgos</creatorcontrib><title>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3\times &lt;/tex-math&gt;&lt;/inline-formula&gt; reduction in classification error in comparison to the state-of-the-art.</description><subject>Database enhancement</subject><subject>Design defects</subject><subject>design for manufacturability</subject><subject>Design for manufacture</subject><subject>Design of experiments</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Image edge detection</subject><subject>Layout</subject><subject>lithographic hotspot detection</subject><subject>Lithography</subject><subject>Machine learning</subject><subject>Pattern formation</subject><subject>Pattern generation</subject><subject>Pattern matching</subject><subject>physical design</subject><subject>synthetic pattern generation</subject><subject>Transforms</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYj-AONlE8-LM_3Y3R4RUEhIMAHPTbe0sES62BYT_r1LMJ5mDs_7zuQh5BFhgAjyZTUajgcUKA4YcEkrcUV6KFmZcxR4TXpAyyoHKOGW3MW4A0AuqOyR5cJns_0htD-N32TTNsVDm7KxTdakpvXZahva42abLU8-bW1qTPahU7LB56862nU21knX3ZZN_FZ7Y_fWp3ty4_RXtA9_s08-3yar0TSfL95no-E8N1SylNeuFtYYU0mQdF2XIDXFkmPtKrBg0CFwVxYlE5rX68o5xjkzqHVRlNQKwfrk-dLbvf99tDGpXXsMvjupqJCSAisK6Ci8UCa0MQbr1CE0ex1OCkGd3amzO3V2p_7cdZmnS6ax1v7zkiEDRPYLq0RqgQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Reddy, Gaurav Rajavendra</creator><creator>Xanthopoulos, Constantinos</creator><creator>Makris, Yiorgos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1259-4913</orcidid><orcidid>https://orcid.org/0000-0002-4322-0068</orcidid><orcidid>https://orcid.org/0000-0002-7815-9877</orcidid></search><sort><creationdate>20211201</creationdate><title>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</title><author>Reddy, Gaurav Rajavendra ; Xanthopoulos, Constantinos ; Makris, Yiorgos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Database enhancement</topic><topic>Design defects</topic><topic>design for manufacturability</topic><topic>Design for manufacture</topic><topic>Design of experiments</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Image edge detection</topic><topic>Layout</topic><topic>lithographic hotspot detection</topic><topic>Lithography</topic><topic>Machine learning</topic><topic>Pattern formation</topic><topic>Pattern generation</topic><topic>Pattern matching</topic><topic>physical design</topic><topic>synthetic pattern generation</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Gaurav Rajavendra</creatorcontrib><creatorcontrib>Xanthopoulos, Constantinos</creatorcontrib><creatorcontrib>Makris, Yiorgos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, Gaurav Rajavendra</au><au>Xanthopoulos, Constantinos</au><au>Makris, Yiorgos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>40</volume><issue>12</issue><spage>2522</spage><epage>2527</epage><pages>2522-2527</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;3\times &lt;/tex-math&gt;&lt;/inline-formula&gt; reduction in classification error in comparison to the state-of-the-art.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3049285</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1259-4913</orcidid><orcidid>https://orcid.org/0000-0002-4322-0068</orcidid><orcidid>https://orcid.org/0000-0002-7815-9877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2021-12, Vol.40 (12), p.2522-2527
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_TCAD_2021_3049285
source IEEE Electronic Library (IEL) Journals
subjects Database enhancement
Design defects
design for manufacturability
Design for manufacture
Design of experiments
False alarms
Feature extraction
Image edge detection
Layout
lithographic hotspot detection
Lithography
Machine learning
Pattern formation
Pattern generation
Pattern matching
physical design
synthetic pattern generation
Transforms
title On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Improving%20Hotspot%20Detection%20Through%20Synthetic%20Pattern-Based%20Database%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Reddy,%20Gaurav%20Rajavendra&rft.date=2021-12-01&rft.volume=40&rft.issue=12&rft.spage=2522&rft.epage=2527&rft.pages=2522-2527&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3049285&rft_dat=%3Cproquest_cross%3E2599203660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599203660&rft_id=info:pmid/&rft_ieee_id=9313011&rfr_iscdi=true