Loading…
On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement
Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 2021-12, Vol.40 (12), p.2522-2527 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553 |
container_end_page | 2527 |
container_issue | 12 |
container_start_page | 2522 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 40 |
creator | Reddy, Gaurav Rajavendra Xanthopoulos, Constantinos Makris, Yiorgos |
description | Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than 3\times reduction in classification error in comparison to the state-of-the-art. |
doi_str_mv | 10.1109/TCAD.2021.3049285 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2021_3049285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9313011</ieee_id><sourcerecordid>2599203660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AONlE8-LM_3Y3R4RUEhIMAHPTbe0sES62BYT_r1LMJ5mDs_7zuQh5BFhgAjyZTUajgcUKA4YcEkrcUV6KFmZcxR4TXpAyyoHKOGW3MW4A0AuqOyR5cJns_0htD-N32TTNsVDm7KxTdakpvXZahva42abLU8-bW1qTPahU7LB56862nU21knX3ZZN_FZ7Y_fWp3ty4_RXtA9_s08-3yar0TSfL95no-E8N1SylNeuFtYYU0mQdF2XIDXFkmPtKrBg0CFwVxYlE5rX68o5xjkzqHVRlNQKwfrk-dLbvf99tDGpXXsMvjupqJCSAisK6Ci8UCa0MQbr1CE0ex1OCkGd3amzO3V2p_7cdZmnS6ax1v7zkiEDRPYLq0RqgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599203660</pqid></control><display><type>article</type><title>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Reddy, Gaurav Rajavendra ; Xanthopoulos, Constantinos ; Makris, Yiorgos</creator><creatorcontrib>Reddy, Gaurav Rajavendra ; Xanthopoulos, Constantinos ; Makris, Yiorgos</creatorcontrib><description>Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> reduction in classification error in comparison to the state-of-the-art.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3049285</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Database enhancement ; Design defects ; design for manufacturability ; Design for manufacture ; Design of experiments ; False alarms ; Feature extraction ; Image edge detection ; Layout ; lithographic hotspot detection ; Lithography ; Machine learning ; Pattern formation ; Pattern generation ; Pattern matching ; physical design ; synthetic pattern generation ; Transforms</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2021-12, Vol.40 (12), p.2522-2527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</citedby><cites>FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</cites><orcidid>0000-0002-1259-4913 ; 0000-0002-4322-0068 ; 0000-0002-7815-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9313011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Reddy, Gaurav Rajavendra</creatorcontrib><creatorcontrib>Xanthopoulos, Constantinos</creatorcontrib><creatorcontrib>Makris, Yiorgos</creatorcontrib><title>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> reduction in classification error in comparison to the state-of-the-art.</description><subject>Database enhancement</subject><subject>Design defects</subject><subject>design for manufacturability</subject><subject>Design for manufacture</subject><subject>Design of experiments</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Image edge detection</subject><subject>Layout</subject><subject>lithographic hotspot detection</subject><subject>Lithography</subject><subject>Machine learning</subject><subject>Pattern formation</subject><subject>Pattern generation</subject><subject>Pattern matching</subject><subject>physical design</subject><subject>synthetic pattern generation</subject><subject>Transforms</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYj-AONlE8-LM_3Y3R4RUEhIMAHPTbe0sES62BYT_r1LMJ5mDs_7zuQh5BFhgAjyZTUajgcUKA4YcEkrcUV6KFmZcxR4TXpAyyoHKOGW3MW4A0AuqOyR5cJns_0htD-N32TTNsVDm7KxTdakpvXZahva42abLU8-bW1qTPahU7LB56862nU21knX3ZZN_FZ7Y_fWp3ty4_RXtA9_s08-3yar0TSfL95no-E8N1SylNeuFtYYU0mQdF2XIDXFkmPtKrBg0CFwVxYlE5rX68o5xjkzqHVRlNQKwfrk-dLbvf99tDGpXXsMvjupqJCSAisK6Ci8UCa0MQbr1CE0ex1OCkGd3amzO3V2p_7cdZmnS6ax1v7zkiEDRPYLq0RqgQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Reddy, Gaurav Rajavendra</creator><creator>Xanthopoulos, Constantinos</creator><creator>Makris, Yiorgos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1259-4913</orcidid><orcidid>https://orcid.org/0000-0002-4322-0068</orcidid><orcidid>https://orcid.org/0000-0002-7815-9877</orcidid></search><sort><creationdate>20211201</creationdate><title>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</title><author>Reddy, Gaurav Rajavendra ; Xanthopoulos, Constantinos ; Makris, Yiorgos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Database enhancement</topic><topic>Design defects</topic><topic>design for manufacturability</topic><topic>Design for manufacture</topic><topic>Design of experiments</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Image edge detection</topic><topic>Layout</topic><topic>lithographic hotspot detection</topic><topic>Lithography</topic><topic>Machine learning</topic><topic>Pattern formation</topic><topic>Pattern generation</topic><topic>Pattern matching</topic><topic>physical design</topic><topic>synthetic pattern generation</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Gaurav Rajavendra</creatorcontrib><creatorcontrib>Xanthopoulos, Constantinos</creatorcontrib><creatorcontrib>Makris, Yiorgos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, Gaurav Rajavendra</au><au>Xanthopoulos, Constantinos</au><au>Makris, Yiorgos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>40</volume><issue>12</issue><spage>2522</spage><epage>2527</epage><pages>2522-2527</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Design hotspots are layout patterns which may cause defects due to complex design and process interactions. Several machine learning and pattern matching-based methods have been proposed to identify and correct them early during design stages. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on a carefully crafted design of experiments. We evaluate the effectiveness of the proposed method using industry-standard tools and designs and demonstrate more than <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> reduction in classification error in comparison to the state-of-the-art.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3049285</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1259-4913</orcidid><orcidid>https://orcid.org/0000-0002-4322-0068</orcidid><orcidid>https://orcid.org/0000-0002-7815-9877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2021-12, Vol.40 (12), p.2522-2527 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAD_2021_3049285 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Database enhancement Design defects design for manufacturability Design for manufacture Design of experiments False alarms Feature extraction Image edge detection Layout lithographic hotspot detection Lithography Machine learning Pattern formation Pattern generation Pattern matching physical design synthetic pattern generation Transforms |
title | On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Improving%20Hotspot%20Detection%20Through%20Synthetic%20Pattern-Based%20Database%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Reddy,%20Gaurav%20Rajavendra&rft.date=2021-12-01&rft.volume=40&rft.issue=12&rft.spage=2522&rft.epage=2527&rft.pages=2522-2527&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3049285&rft_dat=%3Cproquest_cross%3E2599203660%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-bfb5eccc89092db709a21741bf80e0c1f104f76735a4bd8ff3443c1aa6672e553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599203660&rft_id=info:pmid/&rft_ieee_id=9313011&rfr_iscdi=true |