Loading…

Fast-Accurate Full-Chip Dynamic Thermal Simulation With Fine Resolution Enabled by a Learning Method

The need for full-chip dynamic thermal simulation for effective runtime thermal management of multicore processors has been growing in recent years due to the rising demand for high-performance computing. In addition to simulation efficiency and accuracy, a high resolution is desirable in order to a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2023-08, Vol.42 (8), p.2675-2688
Main Authors: Jiang, Lin, Liu, Yu, Cheng, Ming-C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The need for full-chip dynamic thermal simulation for effective runtime thermal management of multicore processors has been growing in recent years due to the rising demand for high-performance computing. In addition to simulation efficiency and accuracy, a high resolution is desirable in order to accurately predict crucial hot spots in the chip. This work investigates a simulation technique derived from proper orthogonal decomposition (POD) for full-chip dynamic thermal simulation of a multicore processor. The POD projects a heat transfer problem onto a mathematical space constituted by a finite set of basis functions (or POD modes) that are generated (or trained ) by thermal solution data collected from direct numerical simulation (DNS). Accuracy and efficiency of the POD simulation technique influenced by the quality of thermal data are examined thoroughly, especially in the areas with high thermal gradients. The results show that if the POD modes are trained by good-quality data, the POD simulation offers an accurate prediction of the dynamic thermal distribution in the multicore processor with an extremely small degree of freedom (DoF). A reduction in computational time over four orders of magnitude, compared to the DNS, can be achieved for full-chip dynamic thermal simulation with a resolution as fine as the DNS. The study has also demonstrated that the POD approach can be used to rigorously verify the accuracy of solutions offered by DNS tools. A practical approach is proposed to further enhance the accuracy and efficiency of the proposed full-chip thermal simulation technique.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2022.3229598