Loading…
Reconstruction of 3D Structures From Protein Contact Maps
The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2008-07, Vol.5 (3), p.357-367 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3 |
container_end_page | 367 |
container_issue | 3 |
container_start_page | 357 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 5 |
creator | Vassura, M. Margara, L. Di Lena, P. Medri, F. Fariselli, P. Casadio, R. |
description | The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure. |
doi_str_mv | 10.1109/TCBB.2008.27 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2008_27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4459306</ieee_id><sourcerecordid>69370763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTmzdBige92JnvNEedTgVF0XkuTfoWOrZmJu3B_97UDQUPekpCfrx5woPQIcFjQrC-mE2ursYU42xM1RYaEiFUqrXk2_2ei1RoyQZoL4Q5xpRrzHfRgGRSYczxEOkXsK4Jre9sW7smcVXCrpPXr3PnISRT75bJs3ct1E0ycU1b2DZ5LFZhH-1UxSLAwWYdobfpzWxylz483d5PLh9Sy5lqU0GNLSoJxoDINFGl0oZZasqqsKXQhAthhTSSAdXEALeaEqJj6FILKKhhI3S2nrvy7r2D0ObLOlhYLIoGXBfyTGqRccpUlKd_SqmZwkqyfyHFAmMidIQnv-Dcdb6J343PMhrnkSyi8zWy3oXgocpXvl4W_iMnOO8ryvuK8r6inPYpjzczO7OE8gdvOongaA1qAPi-5jzmwZJ9AlESko8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863293718</pqid></control><display><type>article</type><title>Reconstruction of 3D Structures From Protein Contact Maps</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Vassura, M. ; Margara, L. ; Di Lena, P. ; Medri, F. ; Fariselli, P. ; Casadio, R.</creator><creatorcontrib>Vassura, M. ; Margara, L. ; Di Lena, P. ; Medri, F. ; Fariselli, P. ; Casadio, R.</creatorcontrib><description>The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2008.27</identifier><identifier>PMID: 18670040</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Binding Sites ; Bioinformatics ; Combinatorial algorithms ; Computer Simulation ; Contact map ; Cost function ; Heuristic algorithms ; Models, Chemical ; Models, Molecular ; Molecular Modeling ; Nuclear magnetic resonance ; Predictive models ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Interaction Mapping - methods ; Protein structure prediction ; Proteins ; Proteins - chemistry ; Proteins - ultrastructure ; Simulated annealing ; Solvents ; Spine ; US Department of Transportation</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2008-07, Vol.5 (3), p.357-367</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</citedby><cites>FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4459306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18670040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vassura, M.</creatorcontrib><creatorcontrib>Margara, L.</creatorcontrib><creatorcontrib>Di Lena, P.</creatorcontrib><creatorcontrib>Medri, F.</creatorcontrib><creatorcontrib>Fariselli, P.</creatorcontrib><creatorcontrib>Casadio, R.</creatorcontrib><title>Reconstruction of 3D Structures From Protein Contact Maps</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure.</description><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Combinatorial algorithms</subject><subject>Computer Simulation</subject><subject>Contact map</subject><subject>Cost function</subject><subject>Heuristic algorithms</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Modeling</subject><subject>Nuclear magnetic resonance</subject><subject>Predictive models</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein structure prediction</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - ultrastructure</subject><subject>Simulated annealing</subject><subject>Solvents</subject><subject>Spine</subject><subject>US Department of Transportation</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0c1LwzAYBvAgipvTmzdBige92JnvNEedTgVF0XkuTfoWOrZmJu3B_97UDQUPekpCfrx5woPQIcFjQrC-mE2ursYU42xM1RYaEiFUqrXk2_2ei1RoyQZoL4Q5xpRrzHfRgGRSYczxEOkXsK4Jre9sW7smcVXCrpPXr3PnISRT75bJs3ct1E0ycU1b2DZ5LFZhH-1UxSLAwWYdobfpzWxylz483d5PLh9Sy5lqU0GNLSoJxoDINFGl0oZZasqqsKXQhAthhTSSAdXEALeaEqJj6FILKKhhI3S2nrvy7r2D0ObLOlhYLIoGXBfyTGqRccpUlKd_SqmZwkqyfyHFAmMidIQnv-Dcdb6J343PMhrnkSyi8zWy3oXgocpXvl4W_iMnOO8ryvuK8r6inPYpjzczO7OE8gdvOongaA1qAPi-5jzmwZJ9AlESko8</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Vassura, M.</creator><creator>Margara, L.</creator><creator>Di Lena, P.</creator><creator>Medri, F.</creator><creator>Fariselli, P.</creator><creator>Casadio, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Reconstruction of 3D Structures From Protein Contact Maps</title><author>Vassura, M. ; Margara, L. ; Di Lena, P. ; Medri, F. ; Fariselli, P. ; Casadio, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Combinatorial algorithms</topic><topic>Computer Simulation</topic><topic>Contact map</topic><topic>Cost function</topic><topic>Heuristic algorithms</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Modeling</topic><topic>Nuclear magnetic resonance</topic><topic>Predictive models</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein structure prediction</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - ultrastructure</topic><topic>Simulated annealing</topic><topic>Solvents</topic><topic>Spine</topic><topic>US Department of Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vassura, M.</creatorcontrib><creatorcontrib>Margara, L.</creatorcontrib><creatorcontrib>Di Lena, P.</creatorcontrib><creatorcontrib>Medri, F.</creatorcontrib><creatorcontrib>Fariselli, P.</creatorcontrib><creatorcontrib>Casadio, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vassura, M.</au><au>Margara, L.</au><au>Di Lena, P.</au><au>Medri, F.</au><au>Fariselli, P.</au><au>Casadio, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of 3D Structures From Protein Contact Maps</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>5</volume><issue>3</issue><spage>357</spage><epage>367</epage><pages>357-367</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18670040</pmid><doi>10.1109/TCBB.2008.27</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2008-07, Vol.5 (3), p.357-367 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2008_27 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Binding Sites Bioinformatics Combinatorial algorithms Computer Simulation Contact map Cost function Heuristic algorithms Models, Chemical Models, Molecular Molecular Modeling Nuclear magnetic resonance Predictive models Protein Binding Protein Conformation Protein Folding Protein Interaction Mapping - methods Protein structure prediction Proteins Proteins - chemistry Proteins - ultrastructure Simulated annealing Solvents Spine US Department of Transportation |
title | Reconstruction of 3D Structures From Protein Contact Maps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%203D%20Structures%20From%20Protein%20Contact%20Maps&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Vassura,%20M.&rft.date=2008-07-01&rft.volume=5&rft.issue=3&rft.spage=357&rft.epage=367&rft.pages=357-367&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2008.27&rft_dat=%3Cproquest_cross%3E69370763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863293718&rft_id=info:pmid/18670040&rft_ieee_id=4459306&rfr_iscdi=true |