Loading…

Reconstruction of 3D Structures From Protein Contact Maps

The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2008-07, Vol.5 (3), p.357-367
Main Authors: Vassura, M., Margara, L., Di Lena, P., Medri, F., Fariselli, P., Casadio, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3
cites cdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3
container_end_page 367
container_issue 3
container_start_page 357
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 5
creator Vassura, M.
Margara, L.
Di Lena, P.
Medri, F.
Fariselli, P.
Casadio, R.
description The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure.
doi_str_mv 10.1109/TCBB.2008.27
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2008_27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4459306</ieee_id><sourcerecordid>69370763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTmzdBige92JnvNEedTgVF0XkuTfoWOrZmJu3B_97UDQUPekpCfrx5woPQIcFjQrC-mE2ursYU42xM1RYaEiFUqrXk2_2ei1RoyQZoL4Q5xpRrzHfRgGRSYczxEOkXsK4Jre9sW7smcVXCrpPXr3PnISRT75bJs3ct1E0ycU1b2DZ5LFZhH-1UxSLAwWYdobfpzWxylz483d5PLh9Sy5lqU0GNLSoJxoDINFGl0oZZasqqsKXQhAthhTSSAdXEALeaEqJj6FILKKhhI3S2nrvy7r2D0ObLOlhYLIoGXBfyTGqRccpUlKd_SqmZwkqyfyHFAmMidIQnv-Dcdb6J343PMhrnkSyi8zWy3oXgocpXvl4W_iMnOO8ryvuK8r6inPYpjzczO7OE8gdvOongaA1qAPi-5jzmwZJ9AlESko8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863293718</pqid></control><display><type>article</type><title>Reconstruction of 3D Structures From Protein Contact Maps</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Vassura, M. ; Margara, L. ; Di Lena, P. ; Medri, F. ; Fariselli, P. ; Casadio, R.</creator><creatorcontrib>Vassura, M. ; Margara, L. ; Di Lena, P. ; Medri, F. ; Fariselli, P. ; Casadio, R.</creatorcontrib><description>The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2008.27</identifier><identifier>PMID: 18670040</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Binding Sites ; Bioinformatics ; Combinatorial algorithms ; Computer Simulation ; Contact map ; Cost function ; Heuristic algorithms ; Models, Chemical ; Models, Molecular ; Molecular Modeling ; Nuclear magnetic resonance ; Predictive models ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Interaction Mapping - methods ; Protein structure prediction ; Proteins ; Proteins - chemistry ; Proteins - ultrastructure ; Simulated annealing ; Solvents ; Spine ; US Department of Transportation</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2008-07, Vol.5 (3), p.357-367</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</citedby><cites>FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4459306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18670040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vassura, M.</creatorcontrib><creatorcontrib>Margara, L.</creatorcontrib><creatorcontrib>Di Lena, P.</creatorcontrib><creatorcontrib>Medri, F.</creatorcontrib><creatorcontrib>Fariselli, P.</creatorcontrib><creatorcontrib>Casadio, R.</creatorcontrib><title>Reconstruction of 3D Structures From Protein Contact Maps</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure.</description><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Combinatorial algorithms</subject><subject>Computer Simulation</subject><subject>Contact map</subject><subject>Cost function</subject><subject>Heuristic algorithms</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Modeling</subject><subject>Nuclear magnetic resonance</subject><subject>Predictive models</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein structure prediction</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - ultrastructure</subject><subject>Simulated annealing</subject><subject>Solvents</subject><subject>Spine</subject><subject>US Department of Transportation</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0c1LwzAYBvAgipvTmzdBige92JnvNEedTgVF0XkuTfoWOrZmJu3B_97UDQUPekpCfrx5woPQIcFjQrC-mE2ursYU42xM1RYaEiFUqrXk2_2ei1RoyQZoL4Q5xpRrzHfRgGRSYczxEOkXsK4Jre9sW7smcVXCrpPXr3PnISRT75bJs3ct1E0ycU1b2DZ5LFZhH-1UxSLAwWYdobfpzWxylz483d5PLh9Sy5lqU0GNLSoJxoDINFGl0oZZasqqsKXQhAthhTSSAdXEALeaEqJj6FILKKhhI3S2nrvy7r2D0ObLOlhYLIoGXBfyTGqRccpUlKd_SqmZwkqyfyHFAmMidIQnv-Dcdb6J343PMhrnkSyi8zWy3oXgocpXvl4W_iMnOO8ryvuK8r6inPYpjzczO7OE8gdvOongaA1qAPi-5jzmwZJ9AlESko8</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Vassura, M.</creator><creator>Margara, L.</creator><creator>Di Lena, P.</creator><creator>Medri, F.</creator><creator>Fariselli, P.</creator><creator>Casadio, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Reconstruction of 3D Structures From Protein Contact Maps</title><author>Vassura, M. ; Margara, L. ; Di Lena, P. ; Medri, F. ; Fariselli, P. ; Casadio, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Combinatorial algorithms</topic><topic>Computer Simulation</topic><topic>Contact map</topic><topic>Cost function</topic><topic>Heuristic algorithms</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Modeling</topic><topic>Nuclear magnetic resonance</topic><topic>Predictive models</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein structure prediction</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - ultrastructure</topic><topic>Simulated annealing</topic><topic>Solvents</topic><topic>Spine</topic><topic>US Department of Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vassura, M.</creatorcontrib><creatorcontrib>Margara, L.</creatorcontrib><creatorcontrib>Di Lena, P.</creatorcontrib><creatorcontrib>Medri, F.</creatorcontrib><creatorcontrib>Fariselli, P.</creatorcontrib><creatorcontrib>Casadio, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vassura, M.</au><au>Margara, L.</au><au>Di Lena, P.</au><au>Medri, F.</au><au>Fariselli, P.</au><au>Casadio, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of 3D Structures From Protein Contact Maps</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>5</volume><issue>3</issue><spage>357</spage><epage>367</epage><pages>357-367</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Aringngstroms allow reconstructing 3D models that are very similar to the proteins native structure.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18670040</pmid><doi>10.1109/TCBB.2008.27</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2008-07, Vol.5 (3), p.357-367
issn 1545-5963
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2008_27
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Binding Sites
Bioinformatics
Combinatorial algorithms
Computer Simulation
Contact map
Cost function
Heuristic algorithms
Models, Chemical
Models, Molecular
Molecular Modeling
Nuclear magnetic resonance
Predictive models
Protein Binding
Protein Conformation
Protein Folding
Protein Interaction Mapping - methods
Protein structure prediction
Proteins
Proteins - chemistry
Proteins - ultrastructure
Simulated annealing
Solvents
Spine
US Department of Transportation
title Reconstruction of 3D Structures From Protein Contact Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%203D%20Structures%20From%20Protein%20Contact%20Maps&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Vassura,%20M.&rft.date=2008-07-01&rft.volume=5&rft.issue=3&rft.spage=357&rft.epage=367&rft.pages=357-367&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2008.27&rft_dat=%3Cproquest_cross%3E69370763%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-52bcaf6ebbe58917d79b3c2bdfacd591455c56b63e291be4c92119596d95ea2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863293718&rft_id=info:pmid/18670040&rft_ieee_id=4459306&rfr_iscdi=true