Loading…

Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis

Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with disease...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2021-05, Vol.18 (3), p.1026-1034
Main Authors: Wang, Wenyan, Zhou, Yuming, Cheng, Mu-Tian, Wang, Yan, Zheng, Chun-Hou, Xiong, Yan, Chen, Peng, Ji, Zhiwei, Wang, Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3
cites cdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3
container_end_page 1034
container_issue 3
container_start_page 1026
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 18
creator Wang, Wenyan
Zhou, Yuming
Cheng, Mu-Tian
Wang, Yan
Zheng, Chun-Hou
Xiong, Yan
Chen, Peng
Ji, Zhiwei
Wang, Bing
description Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.
doi_str_mv 10.1109/TCBB.2020.2983894
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2020_2983894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9050856</ieee_id><sourcerecordid>2386431858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq2qVYGUH4CQqpV64bLBn2v7SFKgkSKaQ86svN5ZcLpZp7YjFH59HZJyQHOYked5R9aD0AXBY0Kwvl5OJ5MxxRSPqVZMaf4JnRIhZKl1xT_vZy5KoSt2gs5iXGFMucb8KzphlHJFKDlFjwufYEjO9MXCpGf_BIOzxT0MEItFcD645F5Ncn4oJiZCW-RhEXLGDcVPvza5zYYEwdg35gHSiw9_ipvB9Lvo4jf0pTN9hPNjH6Hl3e1y-quc_76fTW_mpWWaprKRAoRkhsu2oYw0lFrLCW54frUdSCxb1lZUYSC6lZJKqTthJW94U7WdZSN0dTi7Cf7vFmKq1y5a6HszgN_GmjJVcUaUUBn98QFd-W3I382UYJXKJWimyIGywccYoKs3wa1N2NUE13v39d59vXdfH93nzPfj5W2zhvY98V92Bi4PgAOA97XGAitRsX9V84gT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536868652</pqid></control><display><type>article</type><title>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Wang, Wenyan ; Zhou, Yuming ; Cheng, Mu-Tian ; Wang, Yan ; Zheng, Chun-Hou ; Xiong, Yan ; Chen, Peng ; Ji, Zhiwei ; Wang, Bing</creator><creatorcontrib>Wang, Wenyan ; Zhou, Yuming ; Cheng, Mu-Tian ; Wang, Yan ; Zheng, Chun-Hou ; Xiong, Yan ; Chen, Peng ; Ji, Zhiwei ; Wang, Bing</creatorcontrib><description>Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2020.2983894</identifier><identifier>PMID: 32248121</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Cancer ; Clinical medicine ; Computational Biology - methods ; Correlation analysis ; Data mining ; Genes ; Humans ; interaction network ; Lethality ; Melanoma ; Melanoma - genetics ; Mutation ; Mutation - genetics ; Neoplasms - genetics ; Network analysers ; Network analysis ; Pathogenesis ; Pathogenic genes ; Pathogenicity ; Pathogens ; protein domain ; Protein engineering ; Protein Interaction Domains and Motifs - genetics ; Protein Interaction Maps - genetics ; Proteins ; Skin cancer ; somatic mutations</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-05, Vol.18 (3), p.1026-1034</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</citedby><cites>FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</cites><orcidid>0000-0002-5810-8159 ; 0000-0003-4945-7725 ; 0000-0001-6347-8747 ; 0000-0002-2695-1926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9050856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32248121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wenyan</creatorcontrib><creatorcontrib>Zhou, Yuming</creatorcontrib><creatorcontrib>Cheng, Mu-Tian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Xiong, Yan</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Ji, Zhiwei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.</description><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Clinical medicine</subject><subject>Computational Biology - methods</subject><subject>Correlation analysis</subject><subject>Data mining</subject><subject>Genes</subject><subject>Humans</subject><subject>interaction network</subject><subject>Lethality</subject><subject>Melanoma</subject><subject>Melanoma - genetics</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neoplasms - genetics</subject><subject>Network analysers</subject><subject>Network analysis</subject><subject>Pathogenesis</subject><subject>Pathogenic genes</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>protein domain</subject><subject>Protein engineering</subject><subject>Protein Interaction Domains and Motifs - genetics</subject><subject>Protein Interaction Maps - genetics</subject><subject>Proteins</subject><subject>Skin cancer</subject><subject>somatic mutations</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhq2qVYGUH4CQqpV64bLBn2v7SFKgkSKaQ86svN5ZcLpZp7YjFH59HZJyQHOYked5R9aD0AXBY0Kwvl5OJ5MxxRSPqVZMaf4JnRIhZKl1xT_vZy5KoSt2gs5iXGFMucb8KzphlHJFKDlFjwufYEjO9MXCpGf_BIOzxT0MEItFcD645F5Ncn4oJiZCW-RhEXLGDcVPvza5zYYEwdg35gHSiw9_ipvB9Lvo4jf0pTN9hPNjH6Hl3e1y-quc_76fTW_mpWWaprKRAoRkhsu2oYw0lFrLCW54frUdSCxb1lZUYSC6lZJKqTthJW94U7WdZSN0dTi7Cf7vFmKq1y5a6HszgN_GmjJVcUaUUBn98QFd-W3I382UYJXKJWimyIGywccYoKs3wa1N2NUE13v39d59vXdfH93nzPfj5W2zhvY98V92Bi4PgAOA97XGAitRsX9V84gT</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wang, Wenyan</creator><creator>Zhou, Yuming</creator><creator>Cheng, Mu-Tian</creator><creator>Wang, Yan</creator><creator>Zheng, Chun-Hou</creator><creator>Xiong, Yan</creator><creator>Chen, Peng</creator><creator>Ji, Zhiwei</creator><creator>Wang, Bing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5810-8159</orcidid><orcidid>https://orcid.org/0000-0003-4945-7725</orcidid><orcidid>https://orcid.org/0000-0001-6347-8747</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid></search><sort><creationdate>202105</creationdate><title>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</title><author>Wang, Wenyan ; Zhou, Yuming ; Cheng, Mu-Tian ; Wang, Yan ; Zheng, Chun-Hou ; Xiong, Yan ; Chen, Peng ; Ji, Zhiwei ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Clinical medicine</topic><topic>Computational Biology - methods</topic><topic>Correlation analysis</topic><topic>Data mining</topic><topic>Genes</topic><topic>Humans</topic><topic>interaction network</topic><topic>Lethality</topic><topic>Melanoma</topic><topic>Melanoma - genetics</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neoplasms - genetics</topic><topic>Network analysers</topic><topic>Network analysis</topic><topic>Pathogenesis</topic><topic>Pathogenic genes</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>protein domain</topic><topic>Protein engineering</topic><topic>Protein Interaction Domains and Motifs - genetics</topic><topic>Protein Interaction Maps - genetics</topic><topic>Proteins</topic><topic>Skin cancer</topic><topic>somatic mutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenyan</creatorcontrib><creatorcontrib>Zhou, Yuming</creatorcontrib><creatorcontrib>Cheng, Mu-Tian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Xiong, Yan</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Ji, Zhiwei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenyan</au><au>Zhou, Yuming</au><au>Cheng, Mu-Tian</au><au>Wang, Yan</au><au>Zheng, Chun-Hou</au><au>Xiong, Yan</au><au>Chen, Peng</au><au>Ji, Zhiwei</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-05</date><risdate>2021</risdate><volume>18</volume><issue>3</issue><spage>1026</spage><epage>1034</epage><pages>1026-1034</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32248121</pmid><doi>10.1109/TCBB.2020.2983894</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5810-8159</orcidid><orcidid>https://orcid.org/0000-0003-4945-7725</orcidid><orcidid>https://orcid.org/0000-0001-6347-8747</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2021-05, Vol.18 (3), p.1026-1034
issn 1545-5963
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2020_2983894
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service)
subjects Bioinformatics
Cancer
Clinical medicine
Computational Biology - methods
Correlation analysis
Data mining
Genes
Humans
interaction network
Lethality
Melanoma
Melanoma - genetics
Mutation
Mutation - genetics
Neoplasms - genetics
Network analysers
Network analysis
Pathogenesis
Pathogenic genes
Pathogenicity
Pathogens
protein domain
Protein engineering
Protein Interaction Domains and Motifs - genetics
Protein Interaction Maps - genetics
Proteins
Skin cancer
somatic mutations
title Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20Pathogenic%20Genes%20Prioritization%20Based%20on%20Protein%20Domain%20Interaction%20Network%20Analysis&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Wang,%20Wenyan&rft.date=2021-05&rft.volume=18&rft.issue=3&rft.spage=1026&rft.epage=1034&rft.pages=1026-1034&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2020.2983894&rft_dat=%3Cproquest_cross%3E2386431858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536868652&rft_id=info:pmid/32248121&rft_ieee_id=9050856&rfr_iscdi=true