Loading…
Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis
Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with disease...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2021-05, Vol.18 (3), p.1026-1034 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3 |
container_end_page | 1034 |
container_issue | 3 |
container_start_page | 1026 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 18 |
creator | Wang, Wenyan Zhou, Yuming Cheng, Mu-Tian Wang, Yan Zheng, Chun-Hou Xiong, Yan Chen, Peng Ji, Zhiwei Wang, Bing |
description | Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online. |
doi_str_mv | 10.1109/TCBB.2020.2983894 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2020_2983894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9050856</ieee_id><sourcerecordid>2386431858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq2qVYGUH4CQqpV64bLBn2v7SFKgkSKaQ86svN5ZcLpZp7YjFH59HZJyQHOYked5R9aD0AXBY0Kwvl5OJ5MxxRSPqVZMaf4JnRIhZKl1xT_vZy5KoSt2gs5iXGFMucb8KzphlHJFKDlFjwufYEjO9MXCpGf_BIOzxT0MEItFcD645F5Ncn4oJiZCW-RhEXLGDcVPvza5zYYEwdg35gHSiw9_ipvB9Lvo4jf0pTN9hPNjH6Hl3e1y-quc_76fTW_mpWWaprKRAoRkhsu2oYw0lFrLCW54frUdSCxb1lZUYSC6lZJKqTthJW94U7WdZSN0dTi7Cf7vFmKq1y5a6HszgN_GmjJVcUaUUBn98QFd-W3I382UYJXKJWimyIGywccYoKs3wa1N2NUE13v39d59vXdfH93nzPfj5W2zhvY98V92Bi4PgAOA97XGAitRsX9V84gT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536868652</pqid></control><display><type>article</type><title>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Wang, Wenyan ; Zhou, Yuming ; Cheng, Mu-Tian ; Wang, Yan ; Zheng, Chun-Hou ; Xiong, Yan ; Chen, Peng ; Ji, Zhiwei ; Wang, Bing</creator><creatorcontrib>Wang, Wenyan ; Zhou, Yuming ; Cheng, Mu-Tian ; Wang, Yan ; Zheng, Chun-Hou ; Xiong, Yan ; Chen, Peng ; Ji, Zhiwei ; Wang, Bing</creatorcontrib><description>Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2020.2983894</identifier><identifier>PMID: 32248121</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Cancer ; Clinical medicine ; Computational Biology - methods ; Correlation analysis ; Data mining ; Genes ; Humans ; interaction network ; Lethality ; Melanoma ; Melanoma - genetics ; Mutation ; Mutation - genetics ; Neoplasms - genetics ; Network analysers ; Network analysis ; Pathogenesis ; Pathogenic genes ; Pathogenicity ; Pathogens ; protein domain ; Protein engineering ; Protein Interaction Domains and Motifs - genetics ; Protein Interaction Maps - genetics ; Proteins ; Skin cancer ; somatic mutations</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-05, Vol.18 (3), p.1026-1034</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</citedby><cites>FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</cites><orcidid>0000-0002-5810-8159 ; 0000-0003-4945-7725 ; 0000-0001-6347-8747 ; 0000-0002-2695-1926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9050856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32248121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wenyan</creatorcontrib><creatorcontrib>Zhou, Yuming</creatorcontrib><creatorcontrib>Cheng, Mu-Tian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Xiong, Yan</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Ji, Zhiwei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.</description><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Clinical medicine</subject><subject>Computational Biology - methods</subject><subject>Correlation analysis</subject><subject>Data mining</subject><subject>Genes</subject><subject>Humans</subject><subject>interaction network</subject><subject>Lethality</subject><subject>Melanoma</subject><subject>Melanoma - genetics</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neoplasms - genetics</subject><subject>Network analysers</subject><subject>Network analysis</subject><subject>Pathogenesis</subject><subject>Pathogenic genes</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>protein domain</subject><subject>Protein engineering</subject><subject>Protein Interaction Domains and Motifs - genetics</subject><subject>Protein Interaction Maps - genetics</subject><subject>Proteins</subject><subject>Skin cancer</subject><subject>somatic mutations</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PGzEQhq2qVYGUH4CQqpV64bLBn2v7SFKgkSKaQ86svN5ZcLpZp7YjFH59HZJyQHOYked5R9aD0AXBY0Kwvl5OJ5MxxRSPqVZMaf4JnRIhZKl1xT_vZy5KoSt2gs5iXGFMucb8KzphlHJFKDlFjwufYEjO9MXCpGf_BIOzxT0MEItFcD645F5Ncn4oJiZCW-RhEXLGDcVPvza5zYYEwdg35gHSiw9_ipvB9Lvo4jf0pTN9hPNjH6Hl3e1y-quc_76fTW_mpWWaprKRAoRkhsu2oYw0lFrLCW54frUdSCxb1lZUYSC6lZJKqTthJW94U7WdZSN0dTi7Cf7vFmKq1y5a6HszgN_GmjJVcUaUUBn98QFd-W3I382UYJXKJWimyIGywccYoKs3wa1N2NUE13v39d59vXdfH93nzPfj5W2zhvY98V92Bi4PgAOA97XGAitRsX9V84gT</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wang, Wenyan</creator><creator>Zhou, Yuming</creator><creator>Cheng, Mu-Tian</creator><creator>Wang, Yan</creator><creator>Zheng, Chun-Hou</creator><creator>Xiong, Yan</creator><creator>Chen, Peng</creator><creator>Ji, Zhiwei</creator><creator>Wang, Bing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5810-8159</orcidid><orcidid>https://orcid.org/0000-0003-4945-7725</orcidid><orcidid>https://orcid.org/0000-0001-6347-8747</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid></search><sort><creationdate>202105</creationdate><title>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</title><author>Wang, Wenyan ; Zhou, Yuming ; Cheng, Mu-Tian ; Wang, Yan ; Zheng, Chun-Hou ; Xiong, Yan ; Chen, Peng ; Ji, Zhiwei ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Clinical medicine</topic><topic>Computational Biology - methods</topic><topic>Correlation analysis</topic><topic>Data mining</topic><topic>Genes</topic><topic>Humans</topic><topic>interaction network</topic><topic>Lethality</topic><topic>Melanoma</topic><topic>Melanoma - genetics</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neoplasms - genetics</topic><topic>Network analysers</topic><topic>Network analysis</topic><topic>Pathogenesis</topic><topic>Pathogenic genes</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>protein domain</topic><topic>Protein engineering</topic><topic>Protein Interaction Domains and Motifs - genetics</topic><topic>Protein Interaction Maps - genetics</topic><topic>Proteins</topic><topic>Skin cancer</topic><topic>somatic mutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenyan</creatorcontrib><creatorcontrib>Zhou, Yuming</creatorcontrib><creatorcontrib>Cheng, Mu-Tian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zheng, Chun-Hou</creatorcontrib><creatorcontrib>Xiong, Yan</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Ji, Zhiwei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenyan</au><au>Zhou, Yuming</au><au>Cheng, Mu-Tian</au><au>Wang, Yan</au><au>Zheng, Chun-Hou</au><au>Xiong, Yan</au><au>Chen, Peng</au><au>Ji, Zhiwei</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-05</date><risdate>2021</risdate><volume>18</volume><issue>3</issue><spage>1026</spage><epage>1034</epage><pages>1026-1034</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Pathogenicity-related studies are of great importance in understanding the pathogenesis of complex diseases and improving the level of clinical medicine. This work proposed a bioinformatics scheme to analyze cancer-related gene mutations, and try to figure out potential genes associated with diseases from the protein domain-domain interaction network. Herein, five measures of the principle of centrality lethality had been adopted to implement potential correlation analysis, and prioritize the significance of genes. This method was further applied to KEGG pathway analysis by taking the malignant melanoma as an example. The experimental results show that 25 domains can be found, and 18 of them have high potential to be pathogenically important related to malignant melanoma. Finally, a web-based tool, named Human Cancer Related Domain Interaction Network Analyzer, is developed for potential pathogenic genes prioritization for 26 types of human cancers, and the analysis results can be visualized and downloaded online.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32248121</pmid><doi>10.1109/TCBB.2020.2983894</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5810-8159</orcidid><orcidid>https://orcid.org/0000-0003-4945-7725</orcidid><orcidid>https://orcid.org/0000-0001-6347-8747</orcidid><orcidid>https://orcid.org/0000-0002-2695-1926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2021-05, Vol.18 (3), p.1026-1034 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2020_2983894 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service) |
subjects | Bioinformatics Cancer Clinical medicine Computational Biology - methods Correlation analysis Data mining Genes Humans interaction network Lethality Melanoma Melanoma - genetics Mutation Mutation - genetics Neoplasms - genetics Network analysers Network analysis Pathogenesis Pathogenic genes Pathogenicity Pathogens protein domain Protein engineering Protein Interaction Domains and Motifs - genetics Protein Interaction Maps - genetics Proteins Skin cancer somatic mutations |
title | Potential Pathogenic Genes Prioritization Based on Protein Domain Interaction Network Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20Pathogenic%20Genes%20Prioritization%20Based%20on%20Protein%20Domain%20Interaction%20Network%20Analysis&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Wang,%20Wenyan&rft.date=2021-05&rft.volume=18&rft.issue=3&rft.spage=1026&rft.epage=1034&rft.pages=1026-1034&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2020.2983894&rft_dat=%3Cproquest_cross%3E2386431858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-b75e573a47db231b22cc410b4e57cfe707d3d6280e19d772779f5c74b4b6dfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536868652&rft_id=info:pmid/32248121&rft_ieee_id=9050856&rfr_iscdi=true |