Loading…

Communication-Free Inter-Operator Interference Management in Shared Spectrum Small Cell Networks

Emergence of shared spectrum, such as the 3.5-GHz citizen broadband radio service (CBRS) band in the U.S., promises to broaden the mobile operator ecosystem and lead to proliferation of small cell deployments. We consider the inter-operator interference problem that arises when multiple small cell n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cognitive communications and networking 2019-09, Vol.5 (3), p.661-677
Main Authors: Hasan, Cengis, Marina, Mahesh K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-f3fa7c170f742e2596e6fae0842ea225291dc64e3c0f65e00d585fe58b15dddd3
cites cdi_FETCH-LOGICAL-c336t-f3fa7c170f742e2596e6fae0842ea225291dc64e3c0f65e00d585fe58b15dddd3
container_end_page 677
container_issue 3
container_start_page 661
container_title IEEE transactions on cognitive communications and networking
container_volume 5
creator Hasan, Cengis
Marina, Mahesh K.
description Emergence of shared spectrum, such as the 3.5-GHz citizen broadband radio service (CBRS) band in the U.S., promises to broaden the mobile operator ecosystem and lead to proliferation of small cell deployments. We consider the inter-operator interference problem that arises when multiple small cell networks access the shared spectrum. Towards this end, we take a novel communication-free approach that seeks implicit coordination between operators without explicit communication. The key idea is for each operator to sense the spectrum through its mobiles to be able to model the channel vacancy distribution and extrapolate it for the next epoch. We use reproducing kernel Hilbert space kernel embedding of channel vacancy and predict it by vector-valued regression. This predicted value is then relied on by each operator to perform independent but optimal channel assignment to its base stations taking traffic load into account. Via numerical results, we show that our approach, aided by the above channel vacancy forecasting, adapts the spectrum allocation over time as per the traffic demands and more crucially, yields as good as or better performance than a coordination-based approach, even without accounting the overhead of the latter.
doi_str_mv 10.1109/TCCN.2019.2925348
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCCN_2019_2925348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8747413</ieee_id><sourcerecordid>2296107849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f3fa7c170f742e2596e6fae0842ea225291dc64e3c0f65e00d585fe58b15dddd3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-APES8Jy6H9mPHCVYLdT20Hpe182spjabuNkg_ntTUsQ5zMwL7zsDD0LXBM8JwfndrijWc4pJPqc55SxTZ2hCGaOplIyc_9sv0azr9hhjIqgQKpug16Kp695X1sSq8ekiACRLHyGkmxaCiU0YpYMA3kLybLx5hxp8TCqfbD9MgDLZtmBj6OtkW5vDISlgaGuI30347K7QhTOHDmanOUUvi4dd8ZSuNo_L4n6VWsZETB1zRloisZMZBcpzAcIZwGpQhlJOc1JakQGz2AkOGJdccQdcvRFeDsWm6Ha824bmq4cu6n3TBz-81JTmgmCpsnxwkdFlQ9N1AZxuQ1Wb8KMJ1keW-shSH1nqE8shczNmKgD48yuZyYww9gteJnBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296107849</pqid></control><display><type>article</type><title>Communication-Free Inter-Operator Interference Management in Shared Spectrum Small Cell Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hasan, Cengis ; Marina, Mahesh K.</creator><creatorcontrib>Hasan, Cengis ; Marina, Mahesh K.</creatorcontrib><description>Emergence of shared spectrum, such as the 3.5-GHz citizen broadband radio service (CBRS) band in the U.S., promises to broaden the mobile operator ecosystem and lead to proliferation of small cell deployments. We consider the inter-operator interference problem that arises when multiple small cell networks access the shared spectrum. Towards this end, we take a novel communication-free approach that seeks implicit coordination between operators without explicit communication. The key idea is for each operator to sense the spectrum through its mobiles to be able to model the channel vacancy distribution and extrapolate it for the next epoch. We use reproducing kernel Hilbert space kernel embedding of channel vacancy and predict it by vector-valued regression. This predicted value is then relied on by each operator to perform independent but optimal channel assignment to its base stations taking traffic load into account. Via numerical results, we show that our approach, aided by the above channel vacancy forecasting, adapts the spectrum allocation over time as per the traffic demands and more crucially, yields as good as or better performance than a coordination-based approach, even without accounting the overhead of the latter.</description><identifier>ISSN: 2332-7731</identifier><identifier>EISSN: 2332-7731</identifier><identifier>DOI: 10.1109/TCCN.2019.2925348</identifier><identifier>CODEN: ITCCG7</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Broadband ; Channel allocation ; Communication ; Coordination ; Ecosystems ; Hilbert space ; Interference ; interference prediction and management ; Kernel ; kernel embedding of distributions ; Kernels ; machine learning ; Microcell networks ; multi-operator small cell networks ; Sensors ; Shared spectrum ; Spectrum allocation ; Vacancies</subject><ispartof>IEEE transactions on cognitive communications and networking, 2019-09, Vol.5 (3), p.661-677</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f3fa7c170f742e2596e6fae0842ea225291dc64e3c0f65e00d585fe58b15dddd3</citedby><cites>FETCH-LOGICAL-c336t-f3fa7c170f742e2596e6fae0842ea225291dc64e3c0f65e00d585fe58b15dddd3</cites><orcidid>0000-0003-2992-4541 ; 0000-0002-6946-5143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8747413$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Hasan, Cengis</creatorcontrib><creatorcontrib>Marina, Mahesh K.</creatorcontrib><title>Communication-Free Inter-Operator Interference Management in Shared Spectrum Small Cell Networks</title><title>IEEE transactions on cognitive communications and networking</title><addtitle>TCCN</addtitle><description>Emergence of shared spectrum, such as the 3.5-GHz citizen broadband radio service (CBRS) band in the U.S., promises to broaden the mobile operator ecosystem and lead to proliferation of small cell deployments. We consider the inter-operator interference problem that arises when multiple small cell networks access the shared spectrum. Towards this end, we take a novel communication-free approach that seeks implicit coordination between operators without explicit communication. The key idea is for each operator to sense the spectrum through its mobiles to be able to model the channel vacancy distribution and extrapolate it for the next epoch. We use reproducing kernel Hilbert space kernel embedding of channel vacancy and predict it by vector-valued regression. This predicted value is then relied on by each operator to perform independent but optimal channel assignment to its base stations taking traffic load into account. Via numerical results, we show that our approach, aided by the above channel vacancy forecasting, adapts the spectrum allocation over time as per the traffic demands and more crucially, yields as good as or better performance than a coordination-based approach, even without accounting the overhead of the latter.</description><subject>5G mobile communication</subject><subject>Broadband</subject><subject>Channel allocation</subject><subject>Communication</subject><subject>Coordination</subject><subject>Ecosystems</subject><subject>Hilbert space</subject><subject>Interference</subject><subject>interference prediction and management</subject><subject>Kernel</subject><subject>kernel embedding of distributions</subject><subject>Kernels</subject><subject>machine learning</subject><subject>Microcell networks</subject><subject>multi-operator small cell networks</subject><subject>Sensors</subject><subject>Shared spectrum</subject><subject>Spectrum allocation</subject><subject>Vacancies</subject><issn>2332-7731</issn><issn>2332-7731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsNT-APES8Jy6H9mPHCVYLdT20Hpe182spjabuNkg_ntTUsQ5zMwL7zsDD0LXBM8JwfndrijWc4pJPqc55SxTZ2hCGaOplIyc_9sv0azr9hhjIqgQKpug16Kp695X1sSq8ekiACRLHyGkmxaCiU0YpYMA3kLybLx5hxp8TCqfbD9MgDLZtmBj6OtkW5vDISlgaGuI30347K7QhTOHDmanOUUvi4dd8ZSuNo_L4n6VWsZETB1zRloisZMZBcpzAcIZwGpQhlJOc1JakQGz2AkOGJdccQdcvRFeDsWm6Ha824bmq4cu6n3TBz-81JTmgmCpsnxwkdFlQ9N1AZxuQ1Wb8KMJ1keW-shSH1nqE8shczNmKgD48yuZyYww9gteJnBt</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Hasan, Cengis</creator><creator>Marina, Mahesh K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2992-4541</orcidid><orcidid>https://orcid.org/0000-0002-6946-5143</orcidid></search><sort><creationdate>20190901</creationdate><title>Communication-Free Inter-Operator Interference Management in Shared Spectrum Small Cell Networks</title><author>Hasan, Cengis ; Marina, Mahesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f3fa7c170f742e2596e6fae0842ea225291dc64e3c0f65e00d585fe58b15dddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5G mobile communication</topic><topic>Broadband</topic><topic>Channel allocation</topic><topic>Communication</topic><topic>Coordination</topic><topic>Ecosystems</topic><topic>Hilbert space</topic><topic>Interference</topic><topic>interference prediction and management</topic><topic>Kernel</topic><topic>kernel embedding of distributions</topic><topic>Kernels</topic><topic>machine learning</topic><topic>Microcell networks</topic><topic>multi-operator small cell networks</topic><topic>Sensors</topic><topic>Shared spectrum</topic><topic>Spectrum allocation</topic><topic>Vacancies</topic><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Cengis</creatorcontrib><creatorcontrib>Marina, Mahesh K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on cognitive communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Cengis</au><au>Marina, Mahesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication-Free Inter-Operator Interference Management in Shared Spectrum Small Cell Networks</atitle><jtitle>IEEE transactions on cognitive communications and networking</jtitle><stitle>TCCN</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>5</volume><issue>3</issue><spage>661</spage><epage>677</epage><pages>661-677</pages><issn>2332-7731</issn><eissn>2332-7731</eissn><coden>ITCCG7</coden><abstract>Emergence of shared spectrum, such as the 3.5-GHz citizen broadband radio service (CBRS) band in the U.S., promises to broaden the mobile operator ecosystem and lead to proliferation of small cell deployments. We consider the inter-operator interference problem that arises when multiple small cell networks access the shared spectrum. Towards this end, we take a novel communication-free approach that seeks implicit coordination between operators without explicit communication. The key idea is for each operator to sense the spectrum through its mobiles to be able to model the channel vacancy distribution and extrapolate it for the next epoch. We use reproducing kernel Hilbert space kernel embedding of channel vacancy and predict it by vector-valued regression. This predicted value is then relied on by each operator to perform independent but optimal channel assignment to its base stations taking traffic load into account. Via numerical results, we show that our approach, aided by the above channel vacancy forecasting, adapts the spectrum allocation over time as per the traffic demands and more crucially, yields as good as or better performance than a coordination-based approach, even without accounting the overhead of the latter.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCCN.2019.2925348</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2992-4541</orcidid><orcidid>https://orcid.org/0000-0002-6946-5143</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2332-7731
ispartof IEEE transactions on cognitive communications and networking, 2019-09, Vol.5 (3), p.661-677
issn 2332-7731
2332-7731
language eng
recordid cdi_crossref_primary_10_1109_TCCN_2019_2925348
source IEEE Electronic Library (IEL) Journals
subjects 5G mobile communication
Broadband
Channel allocation
Communication
Coordination
Ecosystems
Hilbert space
Interference
interference prediction and management
Kernel
kernel embedding of distributions
Kernels
machine learning
Microcell networks
multi-operator small cell networks
Sensors
Shared spectrum
Spectrum allocation
Vacancies
title Communication-Free Inter-Operator Interference Management in Shared Spectrum Small Cell Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication-Free%20Inter-Operator%20Interference%20Management%20in%20Shared%20Spectrum%20Small%20Cell%20Networks&rft.jtitle=IEEE%20transactions%20on%20cognitive%20communications%20and%20networking&rft.au=Hasan,%20Cengis&rft.date=2019-09-01&rft.volume=5&rft.issue=3&rft.spage=661&rft.epage=677&rft.pages=661-677&rft.issn=2332-7731&rft.eissn=2332-7731&rft.coden=ITCCG7&rft_id=info:doi/10.1109/TCCN.2019.2925348&rft_dat=%3Cproquest_cross%3E2296107849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-f3fa7c170f742e2596e6fae0842ea225291dc64e3c0f65e00d585fe58b15dddd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296107849&rft_id=info:pmid/&rft_ieee_id=8747413&rfr_iscdi=true