Loading…
Intelligent Autonomous User Discovery and Link Maintenance for mmWave and TeraHertz Devices with Directional Antennas
Use of smart directional antennas in handheld devices to generate a narrow beam in different directions for mmWave/TeraHertz communications present significant challenges. Devices using such antennas may have to scan several different directions in three-dimensional (3D) space to discover another us...
Saved in:
Published in: | IEEE transactions on cognitive communications and networking 2021-12, Vol.7 (4), p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Use of smart directional antennas in handheld devices to generate a narrow beam in different directions for mmWave/TeraHertz communications present significant challenges. Devices using such antennas may have to scan several different directions in three-dimensional (3D) space to discover another user or an access point, a process that can result in problematic delays. Moreover, small movements of a user/device in the form of rotation and/or displacement may cause the discovered link to be lost. This paper proposes adaptive link discovery algorithms for devices in both infrastructure/ad hoc networks and evaluates their performance in terms of time-to-discovery. We show that one of the two proposed methods provides guaranteed discovery. We use an inertial measurement unit sensor to help intelligently rediscover a lost/degraded link. We propose sensor assisted link prediction methods for low-latency rediscovery in 3D space. We evaluate the effectiveness of our prediction-based rediscovery methods by testing them with real datasets representing various user/device 3D rotation patterns. We show that the smoothing based rediscovery can reach the prediction accuracy to 100% when two antenna sectors are searched, and it reduces the time-to-rediscovery by up to Sx (S times) as compared to the time-to-discovery, where S is the number of antenna sectors. |
---|---|
ISSN: | 2332-7731 2332-7731 |
DOI: | 10.1109/TCCN.2021.3071142 |