Loading…
A Real-Time Multifunctional Framework for Guidewire Morphological and Positional Analysis in Interventional X-Ray Fluoroscopy
In endovascular and cardiovascular surgery, real-time guidewire morphological and positional analysis is an important prerequisite for robot-assisted intervention, which can aid in reducing the radiation dose, contrast agent, and procedure time. Nevertheless, this task often comes with the challenge...
Saved in:
Published in: | IEEE transactions on cognitive and developmental systems 2021-09, Vol.13 (3), p.657-667 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-6eadcf98014a0c29ba3a203995aca2adb094ddb24c73418c6d858ce91d5aa21c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-6eadcf98014a0c29ba3a203995aca2adb094ddb24c73418c6d858ce91d5aa21c3 |
container_end_page | 667 |
container_issue | 3 |
container_start_page | 657 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | 13 |
creator | Zhou, Yan-Jie Xie, Xiao-Liang Zhou, Xiao-Hu Liu, Shi-Qi Bian, Gui-Bin Hou, Zeng-Guang |
description | In endovascular and cardiovascular surgery, real-time guidewire morphological and positional analysis is an important prerequisite for robot-assisted intervention, which can aid in reducing the radiation dose, contrast agent, and procedure time. Nevertheless, this task often comes with the challenge of the deformable elongated structure with low contrast in noisy X-ray fluoroscopy. In this article, a real-time multifunctional framework is proposed for fully automatic guidewire morphological and positional analysis, namely, guidewire segmentation, endpoint localization, and angle measurement. In the first stage, the proposed fast attention recurrent network (FAR-Net) achieves real-time and accurate guidewire segmentation. In the second stage, the endpoint localization and angle measurement algorithm robustly obtain subpixel-level endpoint and angle of the guidewire tip. Quantitative and qualitative evaluations on the MSGSeg data set consisting of 180 X-ray sequences from 30 patients demonstrate that the proposed framework significantly outperforms simpler baselines as well as the best previously published result for this task. The proposed approach reached {F_{1}} -Score of 0.938, mean distance error of 0.596 pixels, endpoint localization and angle measurement accuracy of 97.8% and 95.3%, and an inference rate of approximately 13 FPS. The proposed framework not only addresses the issues of extreme class imbalance and misclassified examples but also meets the real-time requirements, achieving state-of-the-art performance. The proposed approach is promising for integration into robotic navigation frameworks to various intravascular applications, enabling robotic-assisted intervention. |
doi_str_mv | 10.1109/TCDS.2020.3023952 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2020_3023952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9197674</ieee_id><sourcerecordid>2571224301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6eadcf98014a0c29ba3a203995aca2adb094ddb24c73418c6d858ce91d5aa21c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsGh_gHgJeN6aj_3KsVRbCxWlVvAWpklWU7ebNdm17MH_bkpLLzPDzPMOL28U3RA8IgTz-9Xk4W1EMcUjhinjKT2LBpTlPC444-enmeLLaOj9BmNMMpYXST6I_sZoqaGKV2ar0XNXtabsatkaW0OFpg62emfdNyqtQ7POKL0zLnDWNV-2sp9GBgpqhV6tN0fROJTeG49MjeZ1q92vro-nj3gJPZpWnXXWS9v019FFCZXXw2O_it6nj6vJU7x4mc0n40UsKWdtnGlQsuQFJgngsFoDA4oZ5ylIoKDWmCdKrWkic5aQQmaqSAupOVEpACWSXUV3h7-Nsz-d9q3Y2M4FS17QNCeUJgyTQJEDJYM973QpGme24HpBsNgHLfZBi33Q4hh00NweNEZrfeI54XmWJ-wfk4F75Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571224301</pqid></control><display><type>article</type><title>A Real-Time Multifunctional Framework for Guidewire Morphological and Positional Analysis in Interventional X-Ray Fluoroscopy</title><source>IEEE Xplore (Online service)</source><creator>Zhou, Yan-Jie ; Xie, Xiao-Liang ; Zhou, Xiao-Hu ; Liu, Shi-Qi ; Bian, Gui-Bin ; Hou, Zeng-Guang</creator><creatorcontrib>Zhou, Yan-Jie ; Xie, Xiao-Liang ; Zhou, Xiao-Hu ; Liu, Shi-Qi ; Bian, Gui-Bin ; Hou, Zeng-Guang</creatorcontrib><description>In endovascular and cardiovascular surgery, real-time guidewire morphological and positional analysis is an important prerequisite for robot-assisted intervention, which can aid in reducing the radiation dose, contrast agent, and procedure time. Nevertheless, this task often comes with the challenge of the deformable elongated structure with low contrast in noisy X-ray fluoroscopy. In this article, a real-time multifunctional framework is proposed for fully automatic guidewire morphological and positional analysis, namely, guidewire segmentation, endpoint localization, and angle measurement. In the first stage, the proposed fast attention recurrent network (FAR-Net) achieves real-time and accurate guidewire segmentation. In the second stage, the endpoint localization and angle measurement algorithm robustly obtain subpixel-level endpoint and angle of the guidewire tip. Quantitative and qualitative evaluations on the MSGSeg data set consisting of 180 X-ray sequences from 30 patients demonstrate that the proposed framework significantly outperforms simpler baselines as well as the best previously published result for this task. The proposed approach reached <inline-formula> <tex-math notation="LaTeX">{F_{1}} </tex-math></inline-formula>-Score of 0.938, mean distance error of 0.596 pixels, endpoint localization and angle measurement accuracy of 97.8% and 95.3%, and an inference rate of approximately 13 FPS. The proposed framework not only addresses the issues of extreme class imbalance and misclassified examples but also meets the real-time requirements, achieving state-of-the-art performance. The proposed approach is promising for integration into robotic navigation frameworks to various intravascular applications, enabling robotic-assisted intervention.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2020.3023952</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Catheters ; Contrast agents ; Convolution ; Decoding ; Deep learning ; Elongated structure ; Feature extraction ; Fluoroscopy ; Formability ; guidewire ; Localization ; Morphology ; Pixels ; Qualitative analysis ; Radiation dosage ; Real time ; Real-time systems ; robot-assisted intervention ; Robots ; Segmentation ; segmentation and localization ; Task analysis ; X-ray fluoroscopy</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2021-09, Vol.13 (3), p.657-667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6eadcf98014a0c29ba3a203995aca2adb094ddb24c73418c6d858ce91d5aa21c3</citedby><cites>FETCH-LOGICAL-c293t-6eadcf98014a0c29ba3a203995aca2adb094ddb24c73418c6d858ce91d5aa21c3</cites><orcidid>0000-0002-6227-4811 ; 0000-0001-7191-4449 ; 0000-0002-7602-4848 ; 0000-0003-4708-2245 ; 0000-0002-1534-5840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9197674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhou, Yan-Jie</creatorcontrib><creatorcontrib>Xie, Xiao-Liang</creatorcontrib><creatorcontrib>Zhou, Xiao-Hu</creatorcontrib><creatorcontrib>Liu, Shi-Qi</creatorcontrib><creatorcontrib>Bian, Gui-Bin</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><title>A Real-Time Multifunctional Framework for Guidewire Morphological and Positional Analysis in Interventional X-Ray Fluoroscopy</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>In endovascular and cardiovascular surgery, real-time guidewire morphological and positional analysis is an important prerequisite for robot-assisted intervention, which can aid in reducing the radiation dose, contrast agent, and procedure time. Nevertheless, this task often comes with the challenge of the deformable elongated structure with low contrast in noisy X-ray fluoroscopy. In this article, a real-time multifunctional framework is proposed for fully automatic guidewire morphological and positional analysis, namely, guidewire segmentation, endpoint localization, and angle measurement. In the first stage, the proposed fast attention recurrent network (FAR-Net) achieves real-time and accurate guidewire segmentation. In the second stage, the endpoint localization and angle measurement algorithm robustly obtain subpixel-level endpoint and angle of the guidewire tip. Quantitative and qualitative evaluations on the MSGSeg data set consisting of 180 X-ray sequences from 30 patients demonstrate that the proposed framework significantly outperforms simpler baselines as well as the best previously published result for this task. The proposed approach reached <inline-formula> <tex-math notation="LaTeX">{F_{1}} </tex-math></inline-formula>-Score of 0.938, mean distance error of 0.596 pixels, endpoint localization and angle measurement accuracy of 97.8% and 95.3%, and an inference rate of approximately 13 FPS. The proposed framework not only addresses the issues of extreme class imbalance and misclassified examples but also meets the real-time requirements, achieving state-of-the-art performance. The proposed approach is promising for integration into robotic navigation frameworks to various intravascular applications, enabling robotic-assisted intervention.</description><subject>Algorithms</subject><subject>Catheters</subject><subject>Contrast agents</subject><subject>Convolution</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Elongated structure</subject><subject>Feature extraction</subject><subject>Fluoroscopy</subject><subject>Formability</subject><subject>guidewire</subject><subject>Localization</subject><subject>Morphology</subject><subject>Pixels</subject><subject>Qualitative analysis</subject><subject>Radiation dosage</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>robot-assisted intervention</subject><subject>Robots</subject><subject>Segmentation</subject><subject>segmentation and localization</subject><subject>Task analysis</subject><subject>X-ray fluoroscopy</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsGh_gHgJeN6aj_3KsVRbCxWlVvAWpklWU7ebNdm17MH_bkpLLzPDzPMOL28U3RA8IgTz-9Xk4W1EMcUjhinjKT2LBpTlPC444-enmeLLaOj9BmNMMpYXST6I_sZoqaGKV2ar0XNXtabsatkaW0OFpg62emfdNyqtQ7POKL0zLnDWNV-2sp9GBgpqhV6tN0fROJTeG49MjeZ1q92vro-nj3gJPZpWnXXWS9v019FFCZXXw2O_it6nj6vJU7x4mc0n40UsKWdtnGlQsuQFJgngsFoDA4oZ5ylIoKDWmCdKrWkic5aQQmaqSAupOVEpACWSXUV3h7-Nsz-d9q3Y2M4FS17QNCeUJgyTQJEDJYM973QpGme24HpBsNgHLfZBi33Q4hh00NweNEZrfeI54XmWJ-wfk4F75Q</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhou, Yan-Jie</creator><creator>Xie, Xiao-Liang</creator><creator>Zhou, Xiao-Hu</creator><creator>Liu, Shi-Qi</creator><creator>Bian, Gui-Bin</creator><creator>Hou, Zeng-Guang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6227-4811</orcidid><orcidid>https://orcid.org/0000-0001-7191-4449</orcidid><orcidid>https://orcid.org/0000-0002-7602-4848</orcidid><orcidid>https://orcid.org/0000-0003-4708-2245</orcidid><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid></search><sort><creationdate>20210901</creationdate><title>A Real-Time Multifunctional Framework for Guidewire Morphological and Positional Analysis in Interventional X-Ray Fluoroscopy</title><author>Zhou, Yan-Jie ; Xie, Xiao-Liang ; Zhou, Xiao-Hu ; Liu, Shi-Qi ; Bian, Gui-Bin ; Hou, Zeng-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6eadcf98014a0c29ba3a203995aca2adb094ddb24c73418c6d858ce91d5aa21c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Catheters</topic><topic>Contrast agents</topic><topic>Convolution</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Elongated structure</topic><topic>Feature extraction</topic><topic>Fluoroscopy</topic><topic>Formability</topic><topic>guidewire</topic><topic>Localization</topic><topic>Morphology</topic><topic>Pixels</topic><topic>Qualitative analysis</topic><topic>Radiation dosage</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>robot-assisted intervention</topic><topic>Robots</topic><topic>Segmentation</topic><topic>segmentation and localization</topic><topic>Task analysis</topic><topic>X-ray fluoroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yan-Jie</creatorcontrib><creatorcontrib>Xie, Xiao-Liang</creatorcontrib><creatorcontrib>Zhou, Xiao-Hu</creatorcontrib><creatorcontrib>Liu, Shi-Qi</creatorcontrib><creatorcontrib>Bian, Gui-Bin</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yan-Jie</au><au>Xie, Xiao-Liang</au><au>Zhou, Xiao-Hu</au><au>Liu, Shi-Qi</au><au>Bian, Gui-Bin</au><au>Hou, Zeng-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Real-Time Multifunctional Framework for Guidewire Morphological and Positional Analysis in Interventional X-Ray Fluoroscopy</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>657</spage><epage>667</epage><pages>657-667</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>In endovascular and cardiovascular surgery, real-time guidewire morphological and positional analysis is an important prerequisite for robot-assisted intervention, which can aid in reducing the radiation dose, contrast agent, and procedure time. Nevertheless, this task often comes with the challenge of the deformable elongated structure with low contrast in noisy X-ray fluoroscopy. In this article, a real-time multifunctional framework is proposed for fully automatic guidewire morphological and positional analysis, namely, guidewire segmentation, endpoint localization, and angle measurement. In the first stage, the proposed fast attention recurrent network (FAR-Net) achieves real-time and accurate guidewire segmentation. In the second stage, the endpoint localization and angle measurement algorithm robustly obtain subpixel-level endpoint and angle of the guidewire tip. Quantitative and qualitative evaluations on the MSGSeg data set consisting of 180 X-ray sequences from 30 patients demonstrate that the proposed framework significantly outperforms simpler baselines as well as the best previously published result for this task. The proposed approach reached <inline-formula> <tex-math notation="LaTeX">{F_{1}} </tex-math></inline-formula>-Score of 0.938, mean distance error of 0.596 pixels, endpoint localization and angle measurement accuracy of 97.8% and 95.3%, and an inference rate of approximately 13 FPS. The proposed framework not only addresses the issues of extreme class imbalance and misclassified examples but also meets the real-time requirements, achieving state-of-the-art performance. The proposed approach is promising for integration into robotic navigation frameworks to various intravascular applications, enabling robotic-assisted intervention.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2020.3023952</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6227-4811</orcidid><orcidid>https://orcid.org/0000-0001-7191-4449</orcidid><orcidid>https://orcid.org/0000-0002-7602-4848</orcidid><orcidid>https://orcid.org/0000-0003-4708-2245</orcidid><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2021-09, Vol.13 (3), p.657-667 |
issn | 2379-8920 2379-8939 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCDS_2020_3023952 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Catheters Contrast agents Convolution Decoding Deep learning Elongated structure Feature extraction Fluoroscopy Formability guidewire Localization Morphology Pixels Qualitative analysis Radiation dosage Real time Real-time systems robot-assisted intervention Robots Segmentation segmentation and localization Task analysis X-ray fluoroscopy |
title | A Real-Time Multifunctional Framework for Guidewire Morphological and Positional Analysis in Interventional X-Ray Fluoroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Real-Time%20Multifunctional%20Framework%20for%20Guidewire%20Morphological%20and%20Positional%20Analysis%20in%20Interventional%20X-Ray%20Fluoroscopy&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Zhou,%20Yan-Jie&rft.date=2021-09-01&rft.volume=13&rft.issue=3&rft.spage=657&rft.epage=667&rft.pages=657-667&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2020.3023952&rft_dat=%3Cproquest_cross%3E2571224301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-6eadcf98014a0c29ba3a203995aca2adb094ddb24c73418c6d858ce91d5aa21c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571224301&rft_id=info:pmid/&rft_ieee_id=9197674&rfr_iscdi=true |