Loading…
BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neur...
Saved in:
Published in: | IEEE transactions on cognitive and developmental systems 2023-09, Vol.15 (3), p.1-1 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13 |
container_end_page | 1 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | 15 |
creator | Fan, Chen-Chen Yang, Hongjun Peng, Liang Zhou, Xiao-Hu Ni, Zhen-Liang Zhou, Yan-Jie Chen, Sheng Hou, Zeng-Guang |
description | Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research. |
doi_str_mv | 10.1109/TCDS.2022.3204782 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2022_3204782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9878271</ieee_id><sourcerecordid>2862637934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJg0f4A8RLw4GlrPrZN4q1WrYWqoPUc8rU1dbupyRbRX2-Wll7mDfPem2EeABcYDTBG4mYxuX8fEETIgBJUMk6OQI9QJgouqDg-9ASdgn5KK4QQHlHGS9YDy7vpvHhx7S0cQx2VbwrfpI2PzsJlHbSqizoYVUPfVCGuVetDA6tt6qBx7U-IXzATcFz_fTq_dvE6QeuTU8lBnYuFWZie32bn4KRSdXL9PZ6Bj8eHxeSpmL9OZ5PxvDBE0LZwTFtrrEWCEo0Fo9wKPWRYVwhRobkdcmpQRU1pTJWLVZo4ZCnJc0cVpmfgard3E8P31qVWrsI2NvmkJHxE8tuCllmFdyoTQ0rRVXIT_VrFX4mR7CKVXaSyi1TuI82ey53HO-cOesEzxzD9BzLhcoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862637934</pqid></control><display><type>article</type><title>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</title><source>IEEE Xplore (Online service)</source><creator>Fan, Chen-Chen ; Yang, Hongjun ; Peng, Liang ; Zhou, Xiao-Hu ; Ni, Zhen-Liang ; Zhou, Yan-Jie ; Chen, Sheng ; Hou, Zeng-Guang</creator><creatorcontrib>Fan, Chen-Chen ; Yang, Hongjun ; Peng, Liang ; Zhou, Xiao-Hu ; Ni, Zhen-Liang ; Zhou, Yan-Jie ; Chen, Sheng ; Hou, Zeng-Guang</creatorcontrib><description>Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2022.3204782</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alzheimer's disease ; Artificial neural networks ; Brain ; Brain modeling ; cognitive assessment ; Convolution ; Convolutional neural networks ; Data integration ; Datasets ; Feature extraction ; graph neural networks ; Information retrieval ; Magnetic resonance imaging ; Medical imaging ; structural magnetic resonance imaging ; Task analysis</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2023-09, Vol.15 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</citedby><cites>FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</cites><orcidid>0000-0002-1534-5840 ; 0000-0001-8206-0952 ; 0000-0001-6531-7517 ; 0000-0002-7602-4848 ; 0000-0002-3358-1994 ; 0000-0001-8806-2166 ; 0000-0001-7191-4449 ; 0000-0002-9566-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9878271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fan, Chen-Chen</creatorcontrib><creatorcontrib>Yang, Hongjun</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Zhou, Xiao-Hu</creatorcontrib><creatorcontrib>Ni, Zhen-Liang</creatorcontrib><creatorcontrib>Zhou, Yan-Jie</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><title>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research.</description><subject>Alzheimer's disease</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>cognitive assessment</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>graph neural networks</subject><subject>Information retrieval</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>structural magnetic resonance imaging</subject><subject>Task analysis</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJg0f4A8RLw4GlrPrZN4q1WrYWqoPUc8rU1dbupyRbRX2-Wll7mDfPem2EeABcYDTBG4mYxuX8fEETIgBJUMk6OQI9QJgouqDg-9ASdgn5KK4QQHlHGS9YDy7vpvHhx7S0cQx2VbwrfpI2PzsJlHbSqizoYVUPfVCGuVetDA6tt6qBx7U-IXzATcFz_fTq_dvE6QeuTU8lBnYuFWZie32bn4KRSdXL9PZ6Bj8eHxeSpmL9OZ5PxvDBE0LZwTFtrrEWCEo0Fo9wKPWRYVwhRobkdcmpQRU1pTJWLVZo4ZCnJc0cVpmfgard3E8P31qVWrsI2NvmkJHxE8tuCllmFdyoTQ0rRVXIT_VrFX4mR7CKVXaSyi1TuI82ey53HO-cOesEzxzD9BzLhcoU</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fan, Chen-Chen</creator><creator>Yang, Hongjun</creator><creator>Peng, Liang</creator><creator>Zhou, Xiao-Hu</creator><creator>Ni, Zhen-Liang</creator><creator>Zhou, Yan-Jie</creator><creator>Chen, Sheng</creator><creator>Hou, Zeng-Guang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid><orcidid>https://orcid.org/0000-0001-8206-0952</orcidid><orcidid>https://orcid.org/0000-0001-6531-7517</orcidid><orcidid>https://orcid.org/0000-0002-7602-4848</orcidid><orcidid>https://orcid.org/0000-0002-3358-1994</orcidid><orcidid>https://orcid.org/0000-0001-8806-2166</orcidid><orcidid>https://orcid.org/0000-0001-7191-4449</orcidid><orcidid>https://orcid.org/0000-0002-9566-1383</orcidid></search><sort><creationdate>20230901</creationdate><title>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</title><author>Fan, Chen-Chen ; Yang, Hongjun ; Peng, Liang ; Zhou, Xiao-Hu ; Ni, Zhen-Liang ; Zhou, Yan-Jie ; Chen, Sheng ; Hou, Zeng-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>cognitive assessment</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>graph neural networks</topic><topic>Information retrieval</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>structural magnetic resonance imaging</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Chen-Chen</creatorcontrib><creatorcontrib>Yang, Hongjun</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Zhou, Xiao-Hu</creatorcontrib><creatorcontrib>Ni, Zhen-Liang</creatorcontrib><creatorcontrib>Zhou, Yan-Jie</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Chen-Chen</au><au>Yang, Hongjun</au><au>Peng, Liang</au><au>Zhou, Xiao-Hu</au><au>Ni, Zhen-Liang</au><au>Zhou, Yan-Jie</au><au>Chen, Sheng</au><au>Hou, Zeng-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2022.3204782</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid><orcidid>https://orcid.org/0000-0001-8206-0952</orcidid><orcidid>https://orcid.org/0000-0001-6531-7517</orcidid><orcidid>https://orcid.org/0000-0002-7602-4848</orcidid><orcidid>https://orcid.org/0000-0002-3358-1994</orcidid><orcidid>https://orcid.org/0000-0001-8806-2166</orcidid><orcidid>https://orcid.org/0000-0001-7191-4449</orcidid><orcidid>https://orcid.org/0000-0002-9566-1383</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2023-09, Vol.15 (3), p.1-1 |
issn | 2379-8920 2379-8939 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCDS_2022_3204782 |
source | IEEE Xplore (Online service) |
subjects | Alzheimer's disease Artificial neural networks Brain Brain modeling cognitive assessment Convolution Convolutional neural networks Data integration Datasets Feature extraction graph neural networks Information retrieval Magnetic resonance imaging Medical imaging structural magnetic resonance imaging Task analysis |
title | BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BGL-Net:%20A%20brain-inspired%20global-local%20information%20fusion%20network%20for%20Alzheimer's%20disease%20based%20on%20sMRI&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Fan,%20Chen-Chen&rft.date=2023-09-01&rft.volume=15&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2022.3204782&rft_dat=%3Cproquest_cross%3E2862637934%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862637934&rft_id=info:pmid/&rft_ieee_id=9878271&rfr_iscdi=true |