Loading…

BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI

Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cognitive and developmental systems 2023-09, Vol.15 (3), p.1-1
Main Authors: Fan, Chen-Chen, Yang, Hongjun, Peng, Liang, Zhou, Xiao-Hu, Ni, Zhen-Liang, Zhou, Yan-Jie, Chen, Sheng, Hou, Zeng-Guang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13
cites cdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on cognitive and developmental systems
container_volume 15
creator Fan, Chen-Chen
Yang, Hongjun
Peng, Liang
Zhou, Xiao-Hu
Ni, Zhen-Liang
Zhou, Yan-Jie
Chen, Sheng
Hou, Zeng-Guang
description Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research.
doi_str_mv 10.1109/TCDS.2022.3204782
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2022_3204782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9878271</ieee_id><sourcerecordid>2862637934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJg0f4A8RLw4GlrPrZN4q1WrYWqoPUc8rU1dbupyRbRX2-Wll7mDfPem2EeABcYDTBG4mYxuX8fEETIgBJUMk6OQI9QJgouqDg-9ASdgn5KK4QQHlHGS9YDy7vpvHhx7S0cQx2VbwrfpI2PzsJlHbSqizoYVUPfVCGuVetDA6tt6qBx7U-IXzATcFz_fTq_dvE6QeuTU8lBnYuFWZie32bn4KRSdXL9PZ6Bj8eHxeSpmL9OZ5PxvDBE0LZwTFtrrEWCEo0Fo9wKPWRYVwhRobkdcmpQRU1pTJWLVZo4ZCnJc0cVpmfgard3E8P31qVWrsI2NvmkJHxE8tuCllmFdyoTQ0rRVXIT_VrFX4mR7CKVXaSyi1TuI82ey53HO-cOesEzxzD9BzLhcoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862637934</pqid></control><display><type>article</type><title>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</title><source>IEEE Xplore (Online service)</source><creator>Fan, Chen-Chen ; Yang, Hongjun ; Peng, Liang ; Zhou, Xiao-Hu ; Ni, Zhen-Liang ; Zhou, Yan-Jie ; Chen, Sheng ; Hou, Zeng-Guang</creator><creatorcontrib>Fan, Chen-Chen ; Yang, Hongjun ; Peng, Liang ; Zhou, Xiao-Hu ; Ni, Zhen-Liang ; Zhou, Yan-Jie ; Chen, Sheng ; Hou, Zeng-Guang</creatorcontrib><description>Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2022.3204782</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alzheimer's disease ; Artificial neural networks ; Brain ; Brain modeling ; cognitive assessment ; Convolution ; Convolutional neural networks ; Data integration ; Datasets ; Feature extraction ; graph neural networks ; Information retrieval ; Magnetic resonance imaging ; Medical imaging ; structural magnetic resonance imaging ; Task analysis</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2023-09, Vol.15 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</citedby><cites>FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</cites><orcidid>0000-0002-1534-5840 ; 0000-0001-8206-0952 ; 0000-0001-6531-7517 ; 0000-0002-7602-4848 ; 0000-0002-3358-1994 ; 0000-0001-8806-2166 ; 0000-0001-7191-4449 ; 0000-0002-9566-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9878271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fan, Chen-Chen</creatorcontrib><creatorcontrib>Yang, Hongjun</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Zhou, Xiao-Hu</creatorcontrib><creatorcontrib>Ni, Zhen-Liang</creatorcontrib><creatorcontrib>Zhou, Yan-Jie</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><title>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research.</description><subject>Alzheimer's disease</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>cognitive assessment</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>graph neural networks</subject><subject>Information retrieval</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>structural magnetic resonance imaging</subject><subject>Task analysis</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJg0f4A8RLw4GlrPrZN4q1WrYWqoPUc8rU1dbupyRbRX2-Wll7mDfPem2EeABcYDTBG4mYxuX8fEETIgBJUMk6OQI9QJgouqDg-9ASdgn5KK4QQHlHGS9YDy7vpvHhx7S0cQx2VbwrfpI2PzsJlHbSqizoYVUPfVCGuVetDA6tt6qBx7U-IXzATcFz_fTq_dvE6QeuTU8lBnYuFWZie32bn4KRSdXL9PZ6Bj8eHxeSpmL9OZ5PxvDBE0LZwTFtrrEWCEo0Fo9wKPWRYVwhRobkdcmpQRU1pTJWLVZo4ZCnJc0cVpmfgard3E8P31qVWrsI2NvmkJHxE8tuCllmFdyoTQ0rRVXIT_VrFX4mR7CKVXaSyi1TuI82ey53HO-cOesEzxzD9BzLhcoU</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fan, Chen-Chen</creator><creator>Yang, Hongjun</creator><creator>Peng, Liang</creator><creator>Zhou, Xiao-Hu</creator><creator>Ni, Zhen-Liang</creator><creator>Zhou, Yan-Jie</creator><creator>Chen, Sheng</creator><creator>Hou, Zeng-Guang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid><orcidid>https://orcid.org/0000-0001-8206-0952</orcidid><orcidid>https://orcid.org/0000-0001-6531-7517</orcidid><orcidid>https://orcid.org/0000-0002-7602-4848</orcidid><orcidid>https://orcid.org/0000-0002-3358-1994</orcidid><orcidid>https://orcid.org/0000-0001-8806-2166</orcidid><orcidid>https://orcid.org/0000-0001-7191-4449</orcidid><orcidid>https://orcid.org/0000-0002-9566-1383</orcidid></search><sort><creationdate>20230901</creationdate><title>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</title><author>Fan, Chen-Chen ; Yang, Hongjun ; Peng, Liang ; Zhou, Xiao-Hu ; Ni, Zhen-Liang ; Zhou, Yan-Jie ; Chen, Sheng ; Hou, Zeng-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>cognitive assessment</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>graph neural networks</topic><topic>Information retrieval</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>structural magnetic resonance imaging</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Chen-Chen</creatorcontrib><creatorcontrib>Yang, Hongjun</creatorcontrib><creatorcontrib>Peng, Liang</creatorcontrib><creatorcontrib>Zhou, Xiao-Hu</creatorcontrib><creatorcontrib>Ni, Zhen-Liang</creatorcontrib><creatorcontrib>Zhou, Yan-Jie</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Hou, Zeng-Guang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Chen-Chen</au><au>Yang, Hongjun</au><au>Peng, Liang</au><au>Zhou, Xiao-Hu</au><au>Ni, Zhen-Liang</au><au>Zhou, Yan-Jie</au><au>Chen, Sheng</au><au>Hou, Zeng-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, the most common form of dementia, affecting millions worldwide. Neuroimaging-based early AD diagnosis has become an effective approach, especially by using structural Magnetic Resonance Imaging (sMRI). The convolutional neural network (CNN) based method is challenging to learn dependencies between spatially distant positions in the various brain regions due to its local convolution operation. In contrast, the graph convolutional network (GCN) based work can connect the brain regions to capture global information but is not sensitive to the local information in a single brain region. Unlike a separate CNN or GCN-based method, we proposed a brain-inspired global-local information fusion network (BGL-Net) to diagnose AD. It essentially inherits the advantages of both CNN and GCN. The experiments on three public datasets demonstrate the effectiveness and robustness of our BGL-Net. Our method achieved the best performance on three popular public datasets compared with the existing CNN and GCN-based methods. In addition, our visualization results of the learned brain connection on AD and normal people agree with many current AD clinical research.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2022.3204782</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1534-5840</orcidid><orcidid>https://orcid.org/0000-0001-8206-0952</orcidid><orcidid>https://orcid.org/0000-0001-6531-7517</orcidid><orcidid>https://orcid.org/0000-0002-7602-4848</orcidid><orcidid>https://orcid.org/0000-0002-3358-1994</orcidid><orcidid>https://orcid.org/0000-0001-8806-2166</orcidid><orcidid>https://orcid.org/0000-0001-7191-4449</orcidid><orcidid>https://orcid.org/0000-0002-9566-1383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2023-09, Vol.15 (3), p.1-1
issn 2379-8920
2379-8939
language eng
recordid cdi_crossref_primary_10_1109_TCDS_2022_3204782
source IEEE Xplore (Online service)
subjects Alzheimer's disease
Artificial neural networks
Brain
Brain modeling
cognitive assessment
Convolution
Convolutional neural networks
Data integration
Datasets
Feature extraction
graph neural networks
Information retrieval
Magnetic resonance imaging
Medical imaging
structural magnetic resonance imaging
Task analysis
title BGL-Net: A brain-inspired global-local information fusion network for Alzheimer's disease based on sMRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BGL-Net:%20A%20brain-inspired%20global-local%20information%20fusion%20network%20for%20Alzheimer's%20disease%20based%20on%20sMRI&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Fan,%20Chen-Chen&rft.date=2023-09-01&rft.volume=15&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2022.3204782&rft_dat=%3Cproquest_cross%3E2862637934%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-e7bddcdd0932b19738d9b571bf0039b8d583c0f3c4ccfc4cdab2e0d32583e3a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862637934&rft_id=info:pmid/&rft_ieee_id=9878271&rfr_iscdi=true