Loading…

A Multiagent Meta-Based Task Offloading Strategy for Mobile-Edge Computing

Task offloading in mobile-edge computing (MEC) improves the efficacy of mobile devices (MDs) in terms of computing performance, data storage, and energy consumption by offloading computational tasks to edge servers. Efficient task offloading can leverage MEC technology to reduce task processing late...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cognitive and developmental systems 2024-02, Vol.16 (1), p.100-114
Main Authors: Ding, Weichao, Luo, Fei, Gu, Chunhua, Dai, Zhiming, Lu, Haifeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-c4603a0fc460268406666539d0230888bbbc2387c8a959801b643fd2d0b686b93
container_end_page 114
container_issue 1
container_start_page 100
container_title IEEE transactions on cognitive and developmental systems
container_volume 16
creator Ding, Weichao
Luo, Fei
Gu, Chunhua
Dai, Zhiming
Lu, Haifeng
description Task offloading in mobile-edge computing (MEC) improves the efficacy of mobile devices (MDs) in terms of computing performance, data storage, and energy consumption by offloading computational tasks to edge servers. Efficient task offloading can leverage MEC technology to reduce task processing latency and energy consumption. By integrating the reasoning ability and machine intelligence of the cognitive computing architecture, such as SOAR and ACT-R, reinforcement learning (RL) algorithms have been applied to resolve the task offloading in MEC. To solve the problem that conventional deep RL (DRL) algorithms cannot adapt to dynamic environments, this article proposed a task offloading scheduling strategy which combined multiagent RL and meta-learning. In order to make the two actions of charging time and offloading strategy fully considered at the same time, we implemented a learning network of two agents on an MD. To efficiently train the policy network, we proposed a first-order approximation method based on the clipped surrogate objective. Finally, the experiments are designed with a variety of the number of subtasks, transmission rate, and edge server performance, and the results show that the MRL-based strategy has the overwhelming overall performance and can be quickly applied in various environments with good stability and generalization.
doi_str_mv 10.1109/TCDS.2023.3246107
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2023_3246107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10048492</ieee_id><sourcerecordid>2921293387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c4603a0fc460268406666539d0230888bbbc2387c8a959801b643fd2d0b686b93</originalsourceid><addsrcrecordid>eNpNkM1uwjAQhK2qlYooD1CpB0s9h67t4NhHmtI_gThAz5aT2FFoINR2Drx9HYGq7mX2MLM7-hC6JzAlBOTTNn_ZTClQNmU05QSyKzSiLJOJkExe_-0UbtHE-x0AEM4ykWYj9DnHq74Nja7NIeCVCTp51t5UeKv9N15b23a6ag413gSng6lP2HYOr7qiaU2yqGqD825_7EO03KEbq1tvJhcdo6_XxTZ_T5brt498vkzKWC4kZcqBabCDUi5S4HFmTFaxPwghiqIoKRNZKbScSQGk4CmzFa2g4IIXko3R4_nu0XU_vfFB7breHeJLRSUlVLKYji5ydpWu894Zq46u2Wt3UgTUQE0N1NRATV2oxczDOdMYY_75IRWppOwXy69l3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921293387</pqid></control><display><type>article</type><title>A Multiagent Meta-Based Task Offloading Strategy for Mobile-Edge Computing</title><source>IEEE Xplore (Online service)</source><creator>Ding, Weichao ; Luo, Fei ; Gu, Chunhua ; Dai, Zhiming ; Lu, Haifeng</creator><creatorcontrib>Ding, Weichao ; Luo, Fei ; Gu, Chunhua ; Dai, Zhiming ; Lu, Haifeng</creatorcontrib><description>Task offloading in mobile-edge computing (MEC) improves the efficacy of mobile devices (MDs) in terms of computing performance, data storage, and energy consumption by offloading computational tasks to edge servers. Efficient task offloading can leverage MEC technology to reduce task processing latency and energy consumption. By integrating the reasoning ability and machine intelligence of the cognitive computing architecture, such as SOAR and ACT-R, reinforcement learning (RL) algorithms have been applied to resolve the task offloading in MEC. To solve the problem that conventional deep RL (DRL) algorithms cannot adapt to dynamic environments, this article proposed a task offloading scheduling strategy which combined multiagent RL and meta-learning. In order to make the two actions of charging time and offloading strategy fully considered at the same time, we implemented a learning network of two agents on an MD. To efficiently train the policy network, we proposed a first-order approximation method based on the clipped surrogate objective. Finally, the experiments are designed with a variety of the number of subtasks, transmission rate, and edge server performance, and the results show that the MRL-based strategy has the overwhelming overall performance and can be quickly applied in various environments with good stability and generalization.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2023.3246107</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computation offloading ; Computational modeling ; Data storage ; Deep reinforcement learning ; Deep reinforcement learning (DRL) ; Edge computing ; edge task offloading ; Energy consumption ; Energy storage ; Machine learning ; meta-learning ; Metalearning ; Mobile computing ; Multi-access edge computing ; Multi-agent systems ; multiagent ; Multiagent systems ; Network latency ; Task scheduling</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2024-02, Vol.16 (1), p.100-114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c4603a0fc460268406666539d0230888bbbc2387c8a959801b643fd2d0b686b93</cites><orcidid>0000-0002-7062-4404 ; 0000-0002-1520-9339 ; 0000-0002-8892-3760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10048492$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Ding, Weichao</creatorcontrib><creatorcontrib>Luo, Fei</creatorcontrib><creatorcontrib>Gu, Chunhua</creatorcontrib><creatorcontrib>Dai, Zhiming</creatorcontrib><creatorcontrib>Lu, Haifeng</creatorcontrib><title>A Multiagent Meta-Based Task Offloading Strategy for Mobile-Edge Computing</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Task offloading in mobile-edge computing (MEC) improves the efficacy of mobile devices (MDs) in terms of computing performance, data storage, and energy consumption by offloading computational tasks to edge servers. Efficient task offloading can leverage MEC technology to reduce task processing latency and energy consumption. By integrating the reasoning ability and machine intelligence of the cognitive computing architecture, such as SOAR and ACT-R, reinforcement learning (RL) algorithms have been applied to resolve the task offloading in MEC. To solve the problem that conventional deep RL (DRL) algorithms cannot adapt to dynamic environments, this article proposed a task offloading scheduling strategy which combined multiagent RL and meta-learning. In order to make the two actions of charging time and offloading strategy fully considered at the same time, we implemented a learning network of two agents on an MD. To efficiently train the policy network, we proposed a first-order approximation method based on the clipped surrogate objective. Finally, the experiments are designed with a variety of the number of subtasks, transmission rate, and edge server performance, and the results show that the MRL-based strategy has the overwhelming overall performance and can be quickly applied in various environments with good stability and generalization.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Data storage</subject><subject>Deep reinforcement learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Edge computing</subject><subject>edge task offloading</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Machine learning</subject><subject>meta-learning</subject><subject>Metalearning</subject><subject>Mobile computing</subject><subject>Multi-access edge computing</subject><subject>Multi-agent systems</subject><subject>multiagent</subject><subject>Multiagent systems</subject><subject>Network latency</subject><subject>Task scheduling</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkM1uwjAQhK2qlYooD1CpB0s9h67t4NhHmtI_gThAz5aT2FFoINR2Drx9HYGq7mX2MLM7-hC6JzAlBOTTNn_ZTClQNmU05QSyKzSiLJOJkExe_-0UbtHE-x0AEM4ykWYj9DnHq74Nja7NIeCVCTp51t5UeKv9N15b23a6ag413gSng6lP2HYOr7qiaU2yqGqD825_7EO03KEbq1tvJhcdo6_XxTZ_T5brt498vkzKWC4kZcqBabCDUi5S4HFmTFaxPwghiqIoKRNZKbScSQGk4CmzFa2g4IIXko3R4_nu0XU_vfFB7breHeJLRSUlVLKYji5ydpWu894Zq46u2Wt3UgTUQE0N1NRATV2oxczDOdMYY_75IRWppOwXy69l3A</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ding, Weichao</creator><creator>Luo, Fei</creator><creator>Gu, Chunhua</creator><creator>Dai, Zhiming</creator><creator>Lu, Haifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7062-4404</orcidid><orcidid>https://orcid.org/0000-0002-1520-9339</orcidid><orcidid>https://orcid.org/0000-0002-8892-3760</orcidid></search><sort><creationdate>20240201</creationdate><title>A Multiagent Meta-Based Task Offloading Strategy for Mobile-Edge Computing</title><author>Ding, Weichao ; Luo, Fei ; Gu, Chunhua ; Dai, Zhiming ; Lu, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c4603a0fc460268406666539d0230888bbbc2387c8a959801b643fd2d0b686b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Data storage</topic><topic>Deep reinforcement learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Edge computing</topic><topic>edge task offloading</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Machine learning</topic><topic>meta-learning</topic><topic>Metalearning</topic><topic>Mobile computing</topic><topic>Multi-access edge computing</topic><topic>Multi-agent systems</topic><topic>multiagent</topic><topic>Multiagent systems</topic><topic>Network latency</topic><topic>Task scheduling</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Weichao</creatorcontrib><creatorcontrib>Luo, Fei</creatorcontrib><creatorcontrib>Gu, Chunhua</creatorcontrib><creatorcontrib>Dai, Zhiming</creatorcontrib><creatorcontrib>Lu, Haifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Weichao</au><au>Luo, Fei</au><au>Gu, Chunhua</au><au>Dai, Zhiming</au><au>Lu, Haifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiagent Meta-Based Task Offloading Strategy for Mobile-Edge Computing</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>100</spage><epage>114</epage><pages>100-114</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Task offloading in mobile-edge computing (MEC) improves the efficacy of mobile devices (MDs) in terms of computing performance, data storage, and energy consumption by offloading computational tasks to edge servers. Efficient task offloading can leverage MEC technology to reduce task processing latency and energy consumption. By integrating the reasoning ability and machine intelligence of the cognitive computing architecture, such as SOAR and ACT-R, reinforcement learning (RL) algorithms have been applied to resolve the task offloading in MEC. To solve the problem that conventional deep RL (DRL) algorithms cannot adapt to dynamic environments, this article proposed a task offloading scheduling strategy which combined multiagent RL and meta-learning. In order to make the two actions of charging time and offloading strategy fully considered at the same time, we implemented a learning network of two agents on an MD. To efficiently train the policy network, we proposed a first-order approximation method based on the clipped surrogate objective. Finally, the experiments are designed with a variety of the number of subtasks, transmission rate, and edge server performance, and the results show that the MRL-based strategy has the overwhelming overall performance and can be quickly applied in various environments with good stability and generalization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2023.3246107</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7062-4404</orcidid><orcidid>https://orcid.org/0000-0002-1520-9339</orcidid><orcidid>https://orcid.org/0000-0002-8892-3760</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2024-02, Vol.16 (1), p.100-114
issn 2379-8920
2379-8939
language eng
recordid cdi_crossref_primary_10_1109_TCDS_2023_3246107
source IEEE Xplore (Online service)
subjects Algorithm design and analysis
Algorithms
Computation offloading
Computational modeling
Data storage
Deep reinforcement learning
Deep reinforcement learning (DRL)
Edge computing
edge task offloading
Energy consumption
Energy storage
Machine learning
meta-learning
Metalearning
Mobile computing
Multi-access edge computing
Multi-agent systems
multiagent
Multiagent systems
Network latency
Task scheduling
title A Multiagent Meta-Based Task Offloading Strategy for Mobile-Edge Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiagent%20Meta-Based%20Task%20Offloading%20Strategy%20for%20Mobile-Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Ding,%20Weichao&rft.date=2024-02-01&rft.volume=16&rft.issue=1&rft.spage=100&rft.epage=114&rft.pages=100-114&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2023.3246107&rft_dat=%3Cproquest_cross%3E2921293387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-c4603a0fc460268406666539d0230888bbbc2387c8a959801b643fd2d0b686b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921293387&rft_id=info:pmid/&rft_ieee_id=10048492&rfr_iscdi=true