Loading…
CCANet: Cross-Modality Comprehensive Feature Aggregation Network for Indoor Scene Semantic Segmentation
The semantic segmentation of indoor scenes based on RGB and Depth information has been a persistent and enduring research topic. However, how to fully utilize the complementarity of multimodal features and achieve efficient fusion remains a challenging research topic. To address this challenge, we p...
Saved in:
Published in: | IEEE transactions on cognitive and developmental systems 2024-09, p.1-13 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | |
creator | Zihao, Zhang Yale, Yang Huifang, Hou Fanman, Meng Fan, Zhang Kangzhan, Xie Chunsheng, Zhuang |
description | The semantic segmentation of indoor scenes based on RGB and Depth information has been a persistent and enduring research topic. However, how to fully utilize the complementarity of multimodal features and achieve efficient fusion remains a challenging research topic. To address this challenge, we proposed an innovative cross-modal comprehensive feature aggregation network (CCANet) to achieve high-precision semantic segmentation of indoor scenes. In this method, we first propose a bidirectional cross-modality feature rectification module (BCFR) to complement each other and remove noise in both channel and spatial correlations. After that, the adaptive criss-cross attention fusion module (CAF) is designed to realize multi-stage deep multi-modal feature fusion. Finally, a multi-supervision strategy is applied to accurately learn additional details of the target, guiding the gradual refinement of segmentation maps. By conducting thorough experiments on two openly accessible datasets of indoor scenes, the results demonstrate that CCANet exhibits outstanding performance and robustness in aggregating RGB and depth features. |
doi_str_mv | 10.1109/TCDS.2024.3455356 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2024_3455356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10669091</ieee_id><sourcerecordid>10_1109_TCDS_2024_3455356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631-3aa7b4ed5c38ae390c44f4db43892cc4b151103bc7f9ad20575b8bd091f08ce83</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRC0EElXpByBx8A-k2Fk7iblVhkKlAof2HjnOJgSauHICqH-PQyvEaecwM9p5hFxzNuecqdutvt_MYxaLOQgpQSZnZBJDqqJMgTr_0zG7JLO-f2eM8QTSTKQTUmu9eMHhjmrv-j56dqXZNcOBatfuPb5h1zdfSJdohk-PdFHXHmszNK6jIfXt_AetnKerrnThbCx2SDfYmm5obBB1i93wa78iF5XZ9Tg73SnZLh-2-ilavz6u9GId2QR4BMakhcBSWsgMgmJWiEqUhYDwvbWi4DIMhsKmlTJlzGQqi6womeIVyyxmMCX8WGvHOR6rfO-b1vhDzlk-sspHVvnIKj-xCpmbY6ZBxH_-JFGhGH4AQb1m1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CCANet: Cross-Modality Comprehensive Feature Aggregation Network for Indoor Scene Semantic Segmentation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zihao, Zhang ; Yale, Yang ; Huifang, Hou ; Fanman, Meng ; Fan, Zhang ; Kangzhan, Xie ; Chunsheng, Zhuang</creator><creatorcontrib>Zihao, Zhang ; Yale, Yang ; Huifang, Hou ; Fanman, Meng ; Fan, Zhang ; Kangzhan, Xie ; Chunsheng, Zhuang</creatorcontrib><description>The semantic segmentation of indoor scenes based on RGB and Depth information has been a persistent and enduring research topic. However, how to fully utilize the complementarity of multimodal features and achieve efficient fusion remains a challenging research topic. To address this challenge, we proposed an innovative cross-modal comprehensive feature aggregation network (CCANet) to achieve high-precision semantic segmentation of indoor scenes. In this method, we first propose a bidirectional cross-modality feature rectification module (BCFR) to complement each other and remove noise in both channel and spatial correlations. After that, the adaptive criss-cross attention fusion module (CAF) is designed to realize multi-stage deep multi-modal feature fusion. Finally, a multi-supervision strategy is applied to accurately learn additional details of the target, guiding the gradual refinement of segmentation maps. By conducting thorough experiments on two openly accessible datasets of indoor scenes, the results demonstrate that CCANet exhibits outstanding performance and robustness in aggregating RGB and depth features.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2024.3455356</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bidirectional Rectification ; Cross-Modality Fusion ; Data mining ; Feature extraction ; Image color analysis ; RGB-D ; Semantic segmentation ; Semantics ; Transformers ; Vision Transformers</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2024-09, p.1-13</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10669091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zihao, Zhang</creatorcontrib><creatorcontrib>Yale, Yang</creatorcontrib><creatorcontrib>Huifang, Hou</creatorcontrib><creatorcontrib>Fanman, Meng</creatorcontrib><creatorcontrib>Fan, Zhang</creatorcontrib><creatorcontrib>Kangzhan, Xie</creatorcontrib><creatorcontrib>Chunsheng, Zhuang</creatorcontrib><title>CCANet: Cross-Modality Comprehensive Feature Aggregation Network for Indoor Scene Semantic Segmentation</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>The semantic segmentation of indoor scenes based on RGB and Depth information has been a persistent and enduring research topic. However, how to fully utilize the complementarity of multimodal features and achieve efficient fusion remains a challenging research topic. To address this challenge, we proposed an innovative cross-modal comprehensive feature aggregation network (CCANet) to achieve high-precision semantic segmentation of indoor scenes. In this method, we first propose a bidirectional cross-modality feature rectification module (BCFR) to complement each other and remove noise in both channel and spatial correlations. After that, the adaptive criss-cross attention fusion module (CAF) is designed to realize multi-stage deep multi-modal feature fusion. Finally, a multi-supervision strategy is applied to accurately learn additional details of the target, guiding the gradual refinement of segmentation maps. By conducting thorough experiments on two openly accessible datasets of indoor scenes, the results demonstrate that CCANet exhibits outstanding performance and robustness in aggregating RGB and depth features.</description><subject>Accuracy</subject><subject>Bidirectional Rectification</subject><subject>Cross-Modality Fusion</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>RGB-D</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Transformers</subject><subject>Vision Transformers</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOwzAQRC0EElXpByBx8A-k2Fk7iblVhkKlAof2HjnOJgSauHICqH-PQyvEaecwM9p5hFxzNuecqdutvt_MYxaLOQgpQSZnZBJDqqJMgTr_0zG7JLO-f2eM8QTSTKQTUmu9eMHhjmrv-j56dqXZNcOBatfuPb5h1zdfSJdohk-PdFHXHmszNK6jIfXt_AetnKerrnThbCx2SDfYmm5obBB1i93wa78iF5XZ9Tg73SnZLh-2-ilavz6u9GId2QR4BMakhcBSWsgMgmJWiEqUhYDwvbWi4DIMhsKmlTJlzGQqi6womeIVyyxmMCX8WGvHOR6rfO-b1vhDzlk-sspHVvnIKj-xCpmbY6ZBxH_-JFGhGH4AQb1m1Q</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Zihao, Zhang</creator><creator>Yale, Yang</creator><creator>Huifang, Hou</creator><creator>Fanman, Meng</creator><creator>Fan, Zhang</creator><creator>Kangzhan, Xie</creator><creator>Chunsheng, Zhuang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240905</creationdate><title>CCANet: Cross-Modality Comprehensive Feature Aggregation Network for Indoor Scene Semantic Segmentation</title><author>Zihao, Zhang ; Yale, Yang ; Huifang, Hou ; Fanman, Meng ; Fan, Zhang ; Kangzhan, Xie ; Chunsheng, Zhuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631-3aa7b4ed5c38ae390c44f4db43892cc4b151103bc7f9ad20575b8bd091f08ce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Bidirectional Rectification</topic><topic>Cross-Modality Fusion</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>RGB-D</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Transformers</topic><topic>Vision Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Zihao, Zhang</creatorcontrib><creatorcontrib>Yale, Yang</creatorcontrib><creatorcontrib>Huifang, Hou</creatorcontrib><creatorcontrib>Fanman, Meng</creatorcontrib><creatorcontrib>Fan, Zhang</creatorcontrib><creatorcontrib>Kangzhan, Xie</creatorcontrib><creatorcontrib>Chunsheng, Zhuang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zihao, Zhang</au><au>Yale, Yang</au><au>Huifang, Hou</au><au>Fanman, Meng</au><au>Fan, Zhang</au><au>Kangzhan, Xie</au><au>Chunsheng, Zhuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CCANet: Cross-Modality Comprehensive Feature Aggregation Network for Indoor Scene Semantic Segmentation</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2024-09-05</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>The semantic segmentation of indoor scenes based on RGB and Depth information has been a persistent and enduring research topic. However, how to fully utilize the complementarity of multimodal features and achieve efficient fusion remains a challenging research topic. To address this challenge, we proposed an innovative cross-modal comprehensive feature aggregation network (CCANet) to achieve high-precision semantic segmentation of indoor scenes. In this method, we first propose a bidirectional cross-modality feature rectification module (BCFR) to complement each other and remove noise in both channel and spatial correlations. After that, the adaptive criss-cross attention fusion module (CAF) is designed to realize multi-stage deep multi-modal feature fusion. Finally, a multi-supervision strategy is applied to accurately learn additional details of the target, guiding the gradual refinement of segmentation maps. By conducting thorough experiments on two openly accessible datasets of indoor scenes, the results demonstrate that CCANet exhibits outstanding performance and robustness in aggregating RGB and depth features.</abstract><pub>IEEE</pub><doi>10.1109/TCDS.2024.3455356</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2024-09, p.1-13 |
issn | 2379-8920 2379-8939 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCDS_2024_3455356 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Bidirectional Rectification Cross-Modality Fusion Data mining Feature extraction Image color analysis RGB-D Semantic segmentation Semantics Transformers Vision Transformers |
title | CCANet: Cross-Modality Comprehensive Feature Aggregation Network for Indoor Scene Semantic Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CCANet:%20Cross-Modality%20Comprehensive%20Feature%20Aggregation%20Network%20for%20Indoor%20Scene%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Zihao,%20Zhang&rft.date=2024-09-05&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2024.3455356&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCDS_2024_3455356%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c631-3aa7b4ed5c38ae390c44f4db43892cc4b151103bc7f9ad20575b8bd091f08ce83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10669091&rfr_iscdi=true |