Loading…
An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings
This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intel...
Saved in:
Published in: | IEEE transactions on consumer electronics 2021-02, Vol.67 (1), p.3-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 3 |
container_title | IEEE transactions on consumer electronics |
container_volume | 67 |
creator | Chang, Wan-Jung Chen, Liang-Bi Sie, Cheng-You Yang, Ching-Hsiang |
description | This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%. |
doi_str_mv | 10.1109/TCE.2020.3037065 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2020_3037065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9253595</ieee_id><sourcerecordid>2494377324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ8O5NlHaoWBIVWF25CJnNnSJlHTVJh8M87pcXV3Xzn3MOH0C0lM0qJetjkyxkjjMw44SmZyzM0oVJmiaAsPUcTQlSWcDLnl-gqhC0hVEiWTdDvosMLH13lrDMNXnURmsbV0FnAy7IGnPftbh9dVyePJkCJFyG4EN0P4PUQIrS46j3-dGFvmmbAq3ZnnB-xdyghRO9Mh9emgjhgE_EXFN7g3PdjR1eHa3RRmSbAzelO0cfTcpO_JK9vz6t88ZpYpmhMijTLrCyNAJBC2tKSgpOUmCotS8VTVYFRyoiMMTNnVhTAgErOikqwjNlszqfo_ti78_33fpylt_3ed-NLzYQSPE05EyNFjpQ97PNQ6Z13rfGDpkQfFOtRsT4o1ifFY-TuGHEA8I8rJrlUkv8Bg7944w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494377324</pqid></control><display><type>article</type><title>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chang, Wan-Jung ; Chen, Liang-Bi ; Sie, Cheng-You ; Yang, Ching-Hsiang</creator><creatorcontrib>Chang, Wan-Jung ; Chen, Liang-Bi ; Sie, Cheng-You ; Yang, Ching-Hsiang</creatorcontrib><description>This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2020.3037065</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Artificial intelligence of the Internet of Things (AIoT) ; Collision avoidance ; Consumers ; Dogs ; Edge computing ; Global Positioning System ; Legged locomotion ; Object recognition ; Pedestrian crossings ; Pedestrian safety ; pedestrian walking safety ; Pedestrians ; Real time ; Safety ; Smart glasses ; Sunglasses ; Traffic safety ; Traffic signals ; Visual impairment ; visually impaired ; Walking ; walking cane ; wearable assistive devices ; Wearable technology ; zebra crossing</subject><ispartof>IEEE transactions on consumer electronics, 2021-02, Vol.67 (1), p.3-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</citedby><cites>FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</cites><orcidid>0000-0002-7905-3695 ; 0000-0002-7478-7315 ; 0000-0003-3181-4480 ; 0000-0002-7203-4889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9253595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chang, Wan-Jung</creatorcontrib><creatorcontrib>Chen, Liang-Bi</creatorcontrib><creatorcontrib>Sie, Cheng-You</creatorcontrib><creatorcontrib>Yang, Ching-Hsiang</creatorcontrib><title>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence of the Internet of Things (AIoT)</subject><subject>Collision avoidance</subject><subject>Consumers</subject><subject>Dogs</subject><subject>Edge computing</subject><subject>Global Positioning System</subject><subject>Legged locomotion</subject><subject>Object recognition</subject><subject>Pedestrian crossings</subject><subject>Pedestrian safety</subject><subject>pedestrian walking safety</subject><subject>Pedestrians</subject><subject>Real time</subject><subject>Safety</subject><subject>Smart glasses</subject><subject>Sunglasses</subject><subject>Traffic safety</subject><subject>Traffic signals</subject><subject>Visual impairment</subject><subject>visually impaired</subject><subject>Walking</subject><subject>walking cane</subject><subject>wearable assistive devices</subject><subject>Wearable technology</subject><subject>zebra crossing</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ8O5NlHaoWBIVWF25CJnNnSJlHTVJh8M87pcXV3Xzn3MOH0C0lM0qJetjkyxkjjMw44SmZyzM0oVJmiaAsPUcTQlSWcDLnl-gqhC0hVEiWTdDvosMLH13lrDMNXnURmsbV0FnAy7IGnPftbh9dVyePJkCJFyG4EN0P4PUQIrS46j3-dGFvmmbAq3ZnnB-xdyghRO9Mh9emgjhgE_EXFN7g3PdjR1eHa3RRmSbAzelO0cfTcpO_JK9vz6t88ZpYpmhMijTLrCyNAJBC2tKSgpOUmCotS8VTVYFRyoiMMTNnVhTAgErOikqwjNlszqfo_ti78_33fpylt_3ed-NLzYQSPE05EyNFjpQ97PNQ6Z13rfGDpkQfFOtRsT4o1ifFY-TuGHEA8I8rJrlUkv8Bg7944w</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chang, Wan-Jung</creator><creator>Chen, Liang-Bi</creator><creator>Sie, Cheng-You</creator><creator>Yang, Ching-Hsiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7905-3695</orcidid><orcidid>https://orcid.org/0000-0002-7478-7315</orcidid><orcidid>https://orcid.org/0000-0003-3181-4480</orcidid><orcidid>https://orcid.org/0000-0002-7203-4889</orcidid></search><sort><creationdate>20210201</creationdate><title>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</title><author>Chang, Wan-Jung ; Chen, Liang-Bi ; Sie, Cheng-You ; Yang, Ching-Hsiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence of the Internet of Things (AIoT)</topic><topic>Collision avoidance</topic><topic>Consumers</topic><topic>Dogs</topic><topic>Edge computing</topic><topic>Global Positioning System</topic><topic>Legged locomotion</topic><topic>Object recognition</topic><topic>Pedestrian crossings</topic><topic>Pedestrian safety</topic><topic>pedestrian walking safety</topic><topic>Pedestrians</topic><topic>Real time</topic><topic>Safety</topic><topic>Smart glasses</topic><topic>Sunglasses</topic><topic>Traffic safety</topic><topic>Traffic signals</topic><topic>Visual impairment</topic><topic>visually impaired</topic><topic>Walking</topic><topic>walking cane</topic><topic>wearable assistive devices</topic><topic>Wearable technology</topic><topic>zebra crossing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Wan-Jung</creatorcontrib><creatorcontrib>Chen, Liang-Bi</creatorcontrib><creatorcontrib>Sie, Cheng-You</creatorcontrib><creatorcontrib>Yang, Ching-Hsiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Wan-Jung</au><au>Chen, Liang-Bi</au><au>Sie, Cheng-You</au><au>Yang, Ching-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>67</volume><issue>1</issue><spage>3</spage><epage>11</epage><pages>3-11</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2020.3037065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7905-3695</orcidid><orcidid>https://orcid.org/0000-0002-7478-7315</orcidid><orcidid>https://orcid.org/0000-0003-3181-4480</orcidid><orcidid>https://orcid.org/0000-0002-7203-4889</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2021-02, Vol.67 (1), p.3-11 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCE_2020_3037065 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial intelligence Artificial intelligence of the Internet of Things (AIoT) Collision avoidance Consumers Dogs Edge computing Global Positioning System Legged locomotion Object recognition Pedestrian crossings Pedestrian safety pedestrian walking safety Pedestrians Real time Safety Smart glasses Sunglasses Traffic safety Traffic signals Visual impairment visually impaired Walking walking cane wearable assistive devices Wearable technology zebra crossing |
title | An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Intelligence%20Edge%20Computing-Based%20Assistive%20System%20for%20Visually%20Impaired%20Pedestrian%20Safety%20at%20Zebra%20Crossings&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Chang,%20Wan-Jung&rft.date=2021-02-01&rft.volume=67&rft.issue=1&rft.spage=3&rft.epage=11&rft.pages=3-11&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2020.3037065&rft_dat=%3Cproquest_cross%3E2494377324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494377324&rft_id=info:pmid/&rft_ieee_id=9253595&rfr_iscdi=true |