Loading…

An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings

This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intel...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics 2021-02, Vol.67 (1), p.3-11
Main Authors: Chang, Wan-Jung, Chen, Liang-Bi, Sie, Cheng-You, Yang, Ching-Hsiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863
cites cdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863
container_end_page 11
container_issue 1
container_start_page 3
container_title IEEE transactions on consumer electronics
container_volume 67
creator Chang, Wan-Jung
Chen, Liang-Bi
Sie, Cheng-You
Yang, Ching-Hsiang
description This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%.
doi_str_mv 10.1109/TCE.2020.3037065
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2020_3037065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9253595</ieee_id><sourcerecordid>2494377324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ8O5NlHaoWBIVWF25CJnNnSJlHTVJh8M87pcXV3Xzn3MOH0C0lM0qJetjkyxkjjMw44SmZyzM0oVJmiaAsPUcTQlSWcDLnl-gqhC0hVEiWTdDvosMLH13lrDMNXnURmsbV0FnAy7IGnPftbh9dVyePJkCJFyG4EN0P4PUQIrS46j3-dGFvmmbAq3ZnnB-xdyghRO9Mh9emgjhgE_EXFN7g3PdjR1eHa3RRmSbAzelO0cfTcpO_JK9vz6t88ZpYpmhMijTLrCyNAJBC2tKSgpOUmCotS8VTVYFRyoiMMTNnVhTAgErOikqwjNlszqfo_ti78_33fpylt_3ed-NLzYQSPE05EyNFjpQ97PNQ6Z13rfGDpkQfFOtRsT4o1ifFY-TuGHEA8I8rJrlUkv8Bg7944w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494377324</pqid></control><display><type>article</type><title>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chang, Wan-Jung ; Chen, Liang-Bi ; Sie, Cheng-You ; Yang, Ching-Hsiang</creator><creatorcontrib>Chang, Wan-Jung ; Chen, Liang-Bi ; Sie, Cheng-You ; Yang, Ching-Hsiang</creatorcontrib><description>This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2020.3037065</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Artificial intelligence of the Internet of Things (AIoT) ; Collision avoidance ; Consumers ; Dogs ; Edge computing ; Global Positioning System ; Legged locomotion ; Object recognition ; Pedestrian crossings ; Pedestrian safety ; pedestrian walking safety ; Pedestrians ; Real time ; Safety ; Smart glasses ; Sunglasses ; Traffic safety ; Traffic signals ; Visual impairment ; visually impaired ; Walking ; walking cane ; wearable assistive devices ; Wearable technology ; zebra crossing</subject><ispartof>IEEE transactions on consumer electronics, 2021-02, Vol.67 (1), p.3-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</citedby><cites>FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</cites><orcidid>0000-0002-7905-3695 ; 0000-0002-7478-7315 ; 0000-0003-3181-4480 ; 0000-0002-7203-4889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9253595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chang, Wan-Jung</creatorcontrib><creatorcontrib>Chen, Liang-Bi</creatorcontrib><creatorcontrib>Sie, Cheng-You</creatorcontrib><creatorcontrib>Yang, Ching-Hsiang</creatorcontrib><title>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence of the Internet of Things (AIoT)</subject><subject>Collision avoidance</subject><subject>Consumers</subject><subject>Dogs</subject><subject>Edge computing</subject><subject>Global Positioning System</subject><subject>Legged locomotion</subject><subject>Object recognition</subject><subject>Pedestrian crossings</subject><subject>Pedestrian safety</subject><subject>pedestrian walking safety</subject><subject>Pedestrians</subject><subject>Real time</subject><subject>Safety</subject><subject>Smart glasses</subject><subject>Sunglasses</subject><subject>Traffic safety</subject><subject>Traffic signals</subject><subject>Visual impairment</subject><subject>visually impaired</subject><subject>Walking</subject><subject>walking cane</subject><subject>wearable assistive devices</subject><subject>Wearable technology</subject><subject>zebra crossing</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ8O5NlHaoWBIVWF25CJnNnSJlHTVJh8M87pcXV3Xzn3MOH0C0lM0qJetjkyxkjjMw44SmZyzM0oVJmiaAsPUcTQlSWcDLnl-gqhC0hVEiWTdDvosMLH13lrDMNXnURmsbV0FnAy7IGnPftbh9dVyePJkCJFyG4EN0P4PUQIrS46j3-dGFvmmbAq3ZnnB-xdyghRO9Mh9emgjhgE_EXFN7g3PdjR1eHa3RRmSbAzelO0cfTcpO_JK9vz6t88ZpYpmhMijTLrCyNAJBC2tKSgpOUmCotS8VTVYFRyoiMMTNnVhTAgErOikqwjNlszqfo_ti78_33fpylt_3ed-NLzYQSPE05EyNFjpQ97PNQ6Z13rfGDpkQfFOtRsT4o1ifFY-TuGHEA8I8rJrlUkv8Bg7944w</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chang, Wan-Jung</creator><creator>Chen, Liang-Bi</creator><creator>Sie, Cheng-You</creator><creator>Yang, Ching-Hsiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7905-3695</orcidid><orcidid>https://orcid.org/0000-0002-7478-7315</orcidid><orcidid>https://orcid.org/0000-0003-3181-4480</orcidid><orcidid>https://orcid.org/0000-0002-7203-4889</orcidid></search><sort><creationdate>20210201</creationdate><title>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</title><author>Chang, Wan-Jung ; Chen, Liang-Bi ; Sie, Cheng-You ; Yang, Ching-Hsiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence of the Internet of Things (AIoT)</topic><topic>Collision avoidance</topic><topic>Consumers</topic><topic>Dogs</topic><topic>Edge computing</topic><topic>Global Positioning System</topic><topic>Legged locomotion</topic><topic>Object recognition</topic><topic>Pedestrian crossings</topic><topic>Pedestrian safety</topic><topic>pedestrian walking safety</topic><topic>Pedestrians</topic><topic>Real time</topic><topic>Safety</topic><topic>Smart glasses</topic><topic>Sunglasses</topic><topic>Traffic safety</topic><topic>Traffic signals</topic><topic>Visual impairment</topic><topic>visually impaired</topic><topic>Walking</topic><topic>walking cane</topic><topic>wearable assistive devices</topic><topic>Wearable technology</topic><topic>zebra crossing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Wan-Jung</creatorcontrib><creatorcontrib>Chen, Liang-Bi</creatorcontrib><creatorcontrib>Sie, Cheng-You</creatorcontrib><creatorcontrib>Yang, Ching-Hsiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Wan-Jung</au><au>Chen, Liang-Bi</au><au>Sie, Cheng-You</au><au>Yang, Ching-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>67</volume><issue>1</issue><spage>3</spage><epage>11</epage><pages>3-11</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>This article proposes a wearable assistive system based on artificial intelligence (AI) edge computing techniques to help visually impaired consumers safely use marked crosswalks, or zebra crossings. The proposed wearable assistive system consists of a pair of smart sunglasses, a waist-mounted intelligent device, and an intelligent walking cane (stick). A deep learning technique is adopted for zebra crossing image recognition in real time. Visually impaired consumers need to wear the proposed smart sunglasses and waist-mounted intelligent device and hold the proposed intelligent walking cane when they approach a zebra crossing. When a visually impaired pedestrian reaches a zebra crossing, they will immediately receive a message about the current situation at the crossing and the traffic light signal. Experimental results show that the accuracy of real-time zebra crossing recognition of the proposed system can reach up to 90%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2020.3037065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7905-3695</orcidid><orcidid>https://orcid.org/0000-0002-7478-7315</orcidid><orcidid>https://orcid.org/0000-0003-3181-4480</orcidid><orcidid>https://orcid.org/0000-0002-7203-4889</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2021-02, Vol.67 (1), p.3-11
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2020_3037065
source IEEE Electronic Library (IEL) Journals
subjects Artificial intelligence
Artificial intelligence of the Internet of Things (AIoT)
Collision avoidance
Consumers
Dogs
Edge computing
Global Positioning System
Legged locomotion
Object recognition
Pedestrian crossings
Pedestrian safety
pedestrian walking safety
Pedestrians
Real time
Safety
Smart glasses
Sunglasses
Traffic safety
Traffic signals
Visual impairment
visually impaired
Walking
walking cane
wearable assistive devices
Wearable technology
zebra crossing
title An Artificial Intelligence Edge Computing-Based Assistive System for Visually Impaired Pedestrian Safety at Zebra Crossings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Intelligence%20Edge%20Computing-Based%20Assistive%20System%20for%20Visually%20Impaired%20Pedestrian%20Safety%20at%20Zebra%20Crossings&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Chang,%20Wan-Jung&rft.date=2021-02-01&rft.volume=67&rft.issue=1&rft.spage=3&rft.epage=11&rft.pages=3-11&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2020.3037065&rft_dat=%3Cproquest_cross%3E2494377324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b788c5da4ee545cdc0b3070af7dd9379fea99a4822a62c4be2e1532bf4282c863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494377324&rft_id=info:pmid/&rft_ieee_id=9253595&rfr_iscdi=true