Loading…

Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis

A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.3722-3730
Main Authors: Khadidos, Alaa O., Alsobhi, Aisha, Khadidos, Adil O., Altwijri, Mohammed, Ragab, Mahmoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553
container_end_page 3730
container_issue 1
container_start_page 3722
container_title IEEE transactions on consumer electronics
container_volume 70
creator Khadidos, Alaa O.
Alsobhi, Aisha
Khadidos, Adil O.
Altwijri, Mohammed
Ragab, Mahmoud
description A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures.
doi_str_mv 10.1109/TCE.2024.3365855
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3365855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10436536</ieee_id><sourcerecordid>3049491392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553</originalsourceid><addsrcrecordid>eNpNkL1vwjAQxa2qlUpp9w4dLHUO9WdijyiFgkTFQmfXTS4QBHFqJ5X473EEQ6eT3v3e6d1D6JmSCaVEv23y2YQRJiacp1JJeYNGVEqVCMqyWzQiRKuEk5Tfo4cQ9oRQIZkaoe-F9Q2EUDdbvG67-mgP-B2gxSuIi0GtnMe5a0J_BI-XTQceQoc_XVN3zg_AZuddv93haflnmwJKPLcF4GljD6dQh0d0V9lDgKfrHKOv-WyTL5LV-mOZT1dJwYTskopwprXUgtmUKWYVKyuwWYydSZHqSha8FPKHZopQSlMhJBdZFqWSpqqUko_R6-Vu691vHyOavet9DBEMJ0ILTblmkSIXqvAuBA-VaX382Z8MJWbo0cQezdCjufYYLS8XSw0A_3AR9zzlZ4nWbQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049491392</pqid></control><display><type>article</type><title>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</title><source>IEEE Xplore (Online service)</source><creator>Khadidos, Alaa O. ; Alsobhi, Aisha ; Khadidos, Adil O. ; Altwijri, Mohammed ; Ragab, Mahmoud</creator><creatorcontrib>Khadidos, Alaa O. ; Alsobhi, Aisha ; Khadidos, Adil O. ; Altwijri, Mohammed ; Ragab, Mahmoud</creatorcontrib><description>A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3365855</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Classification ; Consumer behavior analysis ; Customers ; Deep learning ; face analysis ; Face recognition ; Feature extraction ; Image analysis ; jellyfish optimization algorithm ; Machine learning ; Monitoring ; Neural networks ; Optimization ; Sociology ; Statistics ; Technology assessment ; Tuning</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3722-3730</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553</cites><orcidid>0000-0001-6854-6235 ; 0000-0003-3297-3715 ; 0000-0003-2214-1982 ; 0000-0002-4427-0016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10436536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Khadidos, Alaa O.</creatorcontrib><creatorcontrib>Alsobhi, Aisha</creatorcontrib><creatorcontrib>Khadidos, Adil O.</creatorcontrib><creatorcontrib>Altwijri, Mohammed</creatorcontrib><creatorcontrib>Ragab, Mahmoud</creatorcontrib><title>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Classification</subject><subject>Consumer behavior analysis</subject><subject>Customers</subject><subject>Deep learning</subject><subject>face analysis</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>jellyfish optimization algorithm</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Technology assessment</subject><subject>Tuning</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1vwjAQxa2qlUpp9w4dLHUO9WdijyiFgkTFQmfXTS4QBHFqJ5X473EEQ6eT3v3e6d1D6JmSCaVEv23y2YQRJiacp1JJeYNGVEqVCMqyWzQiRKuEk5Tfo4cQ9oRQIZkaoe-F9Q2EUDdbvG67-mgP-B2gxSuIi0GtnMe5a0J_BI-XTQceQoc_XVN3zg_AZuddv93haflnmwJKPLcF4GljD6dQh0d0V9lDgKfrHKOv-WyTL5LV-mOZT1dJwYTskopwprXUgtmUKWYVKyuwWYydSZHqSha8FPKHZopQSlMhJBdZFqWSpqqUko_R6-Vu691vHyOavet9DBEMJ0ILTblmkSIXqvAuBA-VaX382Z8MJWbo0cQezdCjufYYLS8XSw0A_3AR9zzlZ4nWbQM</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Khadidos, Alaa O.</creator><creator>Alsobhi, Aisha</creator><creator>Khadidos, Adil O.</creator><creator>Altwijri, Mohammed</creator><creator>Ragab, Mahmoud</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6854-6235</orcidid><orcidid>https://orcid.org/0000-0003-3297-3715</orcidid><orcidid>https://orcid.org/0000-0003-2214-1982</orcidid><orcidid>https://orcid.org/0000-0002-4427-0016</orcidid></search><sort><creationdate>20240201</creationdate><title>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</title><author>Khadidos, Alaa O. ; Alsobhi, Aisha ; Khadidos, Adil O. ; Altwijri, Mohammed ; Ragab, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Classification</topic><topic>Consumer behavior analysis</topic><topic>Customers</topic><topic>Deep learning</topic><topic>face analysis</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>jellyfish optimization algorithm</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Technology assessment</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khadidos, Alaa O.</creatorcontrib><creatorcontrib>Alsobhi, Aisha</creatorcontrib><creatorcontrib>Khadidos, Adil O.</creatorcontrib><creatorcontrib>Altwijri, Mohammed</creatorcontrib><creatorcontrib>Ragab, Mahmoud</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khadidos, Alaa O.</au><au>Alsobhi, Aisha</au><au>Khadidos, Adil O.</au><au>Altwijri, Mohammed</au><au>Ragab, Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>3722</spage><epage>3730</epage><pages>3722-3730</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3365855</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6854-6235</orcidid><orcidid>https://orcid.org/0000-0003-3297-3715</orcidid><orcidid>https://orcid.org/0000-0003-2214-1982</orcidid><orcidid>https://orcid.org/0000-0002-4427-0016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3722-3730
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2024_3365855
source IEEE Xplore (Online service)
subjects Algorithms
Analytical models
Classification
Consumer behavior analysis
Customers
Deep learning
face analysis
Face recognition
Feature extraction
Image analysis
jellyfish optimization algorithm
Machine learning
Monitoring
Neural networks
Optimization
Sociology
Statistics
Technology assessment
Tuning
title Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Optimal%20Deep%20Learning%20for%20Consumer%20Interest%20Monitoring%20Through%20Advanced%20Face%20Analysis&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Khadidos,%20Alaa%20O.&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=3722&rft.epage=3730&rft.pages=3722-3730&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3365855&rft_dat=%3Cproquest_cross%3E3049491392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049491392&rft_id=info:pmid/&rft_ieee_id=10436536&rfr_iscdi=true