Loading…
Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis
A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and...
Saved in:
Published in: | IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.3722-3730 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553 |
container_end_page | 3730 |
container_issue | 1 |
container_start_page | 3722 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Khadidos, Alaa O. Alsobhi, Aisha Khadidos, Adil O. Altwijri, Mohammed Ragab, Mahmoud |
description | A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures. |
doi_str_mv | 10.1109/TCE.2024.3365855 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3365855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10436536</ieee_id><sourcerecordid>3049491392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553</originalsourceid><addsrcrecordid>eNpNkL1vwjAQxa2qlUpp9w4dLHUO9WdijyiFgkTFQmfXTS4QBHFqJ5X473EEQ6eT3v3e6d1D6JmSCaVEv23y2YQRJiacp1JJeYNGVEqVCMqyWzQiRKuEk5Tfo4cQ9oRQIZkaoe-F9Q2EUDdbvG67-mgP-B2gxSuIi0GtnMe5a0J_BI-XTQceQoc_XVN3zg_AZuddv93haflnmwJKPLcF4GljD6dQh0d0V9lDgKfrHKOv-WyTL5LV-mOZT1dJwYTskopwprXUgtmUKWYVKyuwWYydSZHqSha8FPKHZopQSlMhJBdZFqWSpqqUko_R6-Vu691vHyOavet9DBEMJ0ILTblmkSIXqvAuBA-VaX382Z8MJWbo0cQezdCjufYYLS8XSw0A_3AR9zzlZ4nWbQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049491392</pqid></control><display><type>article</type><title>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</title><source>IEEE Xplore (Online service)</source><creator>Khadidos, Alaa O. ; Alsobhi, Aisha ; Khadidos, Adil O. ; Altwijri, Mohammed ; Ragab, Mahmoud</creator><creatorcontrib>Khadidos, Alaa O. ; Alsobhi, Aisha ; Khadidos, Adil O. ; Altwijri, Mohammed ; Ragab, Mahmoud</creatorcontrib><description>A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3365855</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Classification ; Consumer behavior analysis ; Customers ; Deep learning ; face analysis ; Face recognition ; Feature extraction ; Image analysis ; jellyfish optimization algorithm ; Machine learning ; Monitoring ; Neural networks ; Optimization ; Sociology ; Statistics ; Technology assessment ; Tuning</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3722-3730</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553</cites><orcidid>0000-0001-6854-6235 ; 0000-0003-3297-3715 ; 0000-0003-2214-1982 ; 0000-0002-4427-0016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10436536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Khadidos, Alaa O.</creatorcontrib><creatorcontrib>Alsobhi, Aisha</creatorcontrib><creatorcontrib>Khadidos, Adil O.</creatorcontrib><creatorcontrib>Altwijri, Mohammed</creatorcontrib><creatorcontrib>Ragab, Mahmoud</creatorcontrib><title>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Classification</subject><subject>Consumer behavior analysis</subject><subject>Customers</subject><subject>Deep learning</subject><subject>face analysis</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image analysis</subject><subject>jellyfish optimization algorithm</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Technology assessment</subject><subject>Tuning</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1vwjAQxa2qlUpp9w4dLHUO9WdijyiFgkTFQmfXTS4QBHFqJ5X473EEQ6eT3v3e6d1D6JmSCaVEv23y2YQRJiacp1JJeYNGVEqVCMqyWzQiRKuEk5Tfo4cQ9oRQIZkaoe-F9Q2EUDdbvG67-mgP-B2gxSuIi0GtnMe5a0J_BI-XTQceQoc_XVN3zg_AZuddv93haflnmwJKPLcF4GljD6dQh0d0V9lDgKfrHKOv-WyTL5LV-mOZT1dJwYTskopwprXUgtmUKWYVKyuwWYydSZHqSha8FPKHZopQSlMhJBdZFqWSpqqUko_R6-Vu691vHyOavet9DBEMJ0ILTblmkSIXqvAuBA-VaX382Z8MJWbo0cQezdCjufYYLS8XSw0A_3AR9zzlZ4nWbQM</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Khadidos, Alaa O.</creator><creator>Alsobhi, Aisha</creator><creator>Khadidos, Adil O.</creator><creator>Altwijri, Mohammed</creator><creator>Ragab, Mahmoud</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6854-6235</orcidid><orcidid>https://orcid.org/0000-0003-3297-3715</orcidid><orcidid>https://orcid.org/0000-0003-2214-1982</orcidid><orcidid>https://orcid.org/0000-0002-4427-0016</orcidid></search><sort><creationdate>20240201</creationdate><title>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</title><author>Khadidos, Alaa O. ; Alsobhi, Aisha ; Khadidos, Adil O. ; Altwijri, Mohammed ; Ragab, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Classification</topic><topic>Consumer behavior analysis</topic><topic>Customers</topic><topic>Deep learning</topic><topic>face analysis</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image analysis</topic><topic>jellyfish optimization algorithm</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Technology assessment</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khadidos, Alaa O.</creatorcontrib><creatorcontrib>Alsobhi, Aisha</creatorcontrib><creatorcontrib>Khadidos, Adil O.</creatorcontrib><creatorcontrib>Altwijri, Mohammed</creatorcontrib><creatorcontrib>Ragab, Mahmoud</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khadidos, Alaa O.</au><au>Alsobhi, Aisha</au><au>Khadidos, Adil O.</au><au>Altwijri, Mohammed</au><au>Ragab, Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>3722</spage><epage>3730</epage><pages>3722-3730</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>A facial image analysis system for monitoring customer interest employs cutting-edge facial detection technology for evaluating and analyzing customers' expressions, offering real-time perceptions of their responses and preferences. Leveraging advanced neural networks (NNs) can dynamically and correctly analyze facial expressions, allowing retailers to separate and interpret customers' emotions with remarkable accuracy. Deep learning (DL) systems surpass at capturing difficult patterns and nuances in facial features. This study paper presents a novel jellyfish optimizer algorithm with Deep Learning for Consumer Interest Monitoring Advanced Face Analysis (JOADL-CIMAFA) model. The main intention of the JOADL-CIMAFA method is to analyze the facial images of the consumer using the DL model for the detection and classification of customer interest. In the presented JOADL-CIMAFA technique, the EfficientNet model can be applied to the feature extraction process. For the hyperparameter tuning procedure, the JOA can be used for optimum hyperparameter selection of the EfficientNet model. Furthermore, the long short-term memory (LSTM) technique can be exploited for the identification and classification of consumer interest. To establish the enhanced outcome of the JOADL-CIMAFA system, a widespread of simulations can be implemented. The experimental values highlighted that the JOADL-CIMAFA technique illustrates superior performance over other models in terms of different measures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3365855</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6854-6235</orcidid><orcidid>https://orcid.org/0000-0003-3297-3715</orcidid><orcidid>https://orcid.org/0000-0003-2214-1982</orcidid><orcidid>https://orcid.org/0000-0002-4427-0016</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3722-3730 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCE_2024_3365855 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Analytical models Classification Consumer behavior analysis Customers Deep learning face analysis Face recognition Feature extraction Image analysis jellyfish optimization algorithm Machine learning Monitoring Neural networks Optimization Sociology Statistics Technology assessment Tuning |
title | Harnessing Optimal Deep Learning for Consumer Interest Monitoring Through Advanced Face Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20Optimal%20Deep%20Learning%20for%20Consumer%20Interest%20Monitoring%20Through%20Advanced%20Face%20Analysis&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Khadidos,%20Alaa%20O.&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=3722&rft.epage=3730&rft.pages=3722-3730&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3365855&rft_dat=%3Cproquest_cross%3E3049491392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-f032995942a6282a82dfea700975469f5c3d45b178011164453477d45d168d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049491392&rft_id=info:pmid/&rft_ieee_id=10436536&rfr_iscdi=true |