Loading…
SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification
Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-...
Saved in:
Published in: | IEEE transactions on consumer electronics 2025-01, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on consumer electronics |
container_volume | |
creator | Li, Chunquan Liao, Zhiyuan Cheng, Yuxin Wang, Zitao Wu, Junyun Liu, Ruijun Liu, Peter X. |
description | Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost. |
doi_str_mv | 10.1109/TCE.2025.3535157 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2025_3535157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10855609</ieee_id><sourcerecordid>10_1109_TCE_2025_3535157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629-d1166ddbe9d290b33d6ef6554dbddf23bdba3bea5d86853479fdbbf88b0a70b73</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKd3Dx7yBzqTpkkTb6V2czBxsKHHkizJFmmbkZSJ_97ODfT0wvd-z3t4ALjHaIIxEo_rspqkKKUTQgnFNL8AI0wpTzKc5pdghJDgCUGMXIObGD8RwhlN-Qh8rVbv1XLpfWN9aE14gkUH5-0--IPR8O8OX702Dfxw_Q72OwMLLfe9Oxj4bDrvouu2sGi2Pgx9CwcE_u4mVTWDK7ftZAPLRsborNvI3vnuFlxZ2URzd84xWE-rdfmSLN5m87JYJBuWikRjzJjWygidCqQI0cxYRmmmldY2JUorSZSRVHPGKclyYbVSlnOFZI5UTsYAnWY3wccYjK33wbUyfNcY1Udv9eCtPnqrz94G5OGEOGPMv3dOKUOC_AB7kWs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Chunquan ; Liao, Zhiyuan ; Cheng, Yuxin ; Wang, Zitao ; Wu, Junyun ; Liu, Ruijun ; Liu, Peter X.</creator><creatorcontrib>Li, Chunquan ; Liao, Zhiyuan ; Cheng, Yuxin ; Wang, Zitao ; Wu, Junyun ; Liu, Ruijun ; Liu, Peter X.</creatorcontrib><description>Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2025.3535157</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; Brain modeling ; Brain-computer interface (BCI) ; Classification algorithms ; Computational modeling ; Electroencephalographic (EEG) ; Electroencephalography ; Feature extraction ; Noise ; Noise reduction ; Poolformer ; Steady-state visual evoked potential (SSVEP) ; Visualization</subject><ispartof>IEEE transactions on consumer electronics, 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5493-6379 ; 0000-0002-8703-6967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10855609$$EHTML$$P50$$Gieee$$H</linktohtml></links><search><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Liao, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Yuxin</creatorcontrib><creatorcontrib>Wang, Zitao</creatorcontrib><creatorcontrib>Wu, Junyun</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Liu, Peter X.</creatorcontrib><title>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Brain modeling</subject><subject>Brain-computer interface (BCI)</subject><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>Electroencephalographic (EEG)</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Poolformer</subject><subject>Steady-state visual evoked potential (SSVEP)</subject><subject>Visualization</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLwzAYhoMoOKd3Dx7yBzqTpkkTb6V2czBxsKHHkizJFmmbkZSJ_97ODfT0wvd-z3t4ALjHaIIxEo_rspqkKKUTQgnFNL8AI0wpTzKc5pdghJDgCUGMXIObGD8RwhlN-Qh8rVbv1XLpfWN9aE14gkUH5-0--IPR8O8OX702Dfxw_Q72OwMLLfe9Oxj4bDrvouu2sGi2Pgx9CwcE_u4mVTWDK7ftZAPLRsborNvI3vnuFlxZ2URzd84xWE-rdfmSLN5m87JYJBuWikRjzJjWygidCqQI0cxYRmmmldY2JUorSZSRVHPGKclyYbVSlnOFZI5UTsYAnWY3wccYjK33wbUyfNcY1Udv9eCtPnqrz94G5OGEOGPMv3dOKUOC_AB7kWs8</recordid><startdate>20250125</startdate><enddate>20250125</enddate><creator>Li, Chunquan</creator><creator>Liao, Zhiyuan</creator><creator>Cheng, Yuxin</creator><creator>Wang, Zitao</creator><creator>Wu, Junyun</creator><creator>Liu, Ruijun</creator><creator>Liu, Peter X.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid><orcidid>https://orcid.org/0000-0002-8703-6967</orcidid></search><sort><creationdate>20250125</creationdate><title>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</title><author>Li, Chunquan ; Liao, Zhiyuan ; Cheng, Yuxin ; Wang, Zitao ; Wu, Junyun ; Liu, Ruijun ; Liu, Peter X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629-d1166ddbe9d290b33d6ef6554dbddf23bdba3bea5d86853479fdbbf88b0a70b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Brain modeling</topic><topic>Brain-computer interface (BCI)</topic><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>Electroencephalographic (EEG)</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Poolformer</topic><topic>Steady-state visual evoked potential (SSVEP)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Liao, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Yuxin</creatorcontrib><creatorcontrib>Wang, Zitao</creatorcontrib><creatorcontrib>Wu, Junyun</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Liu, Peter X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunquan</au><au>Liao, Zhiyuan</au><au>Cheng, Yuxin</au><au>Wang, Zitao</au><au>Wu, Junyun</au><au>Liu, Ruijun</au><au>Liu, Peter X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2025-01-25</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost.</abstract><pub>IEEE</pub><doi>10.1109/TCE.2025.3535157</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid><orcidid>https://orcid.org/0000-0002-8703-6967</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2025-01, p.1-1 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCE_2025_3535157 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Adaptation models Brain modeling Brain-computer interface (BCI) Classification algorithms Computational modeling Electroencephalographic (EEG) Electroencephalography Feature extraction Noise Noise reduction Poolformer Steady-state visual evoked potential (SSVEP) Visualization |
title | SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T15%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SSVEPPoolformer:%20An%20Improved%20Poolformer%20Model%20With%20the%20Adaptive%20Denoising%20Algorithm%20for%20SSVEP-EEG%20Signal%20Classification&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Li,%20Chunquan&rft.date=2025-01-25&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2025.3535157&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCE_2025_3535157%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c629-d1166ddbe9d290b33d6ef6554dbddf23bdba3bea5d86853479fdbbf88b0a70b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10855609&rfr_iscdi=true |