Loading…

SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification

Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics 2025-01, p.1-1
Main Authors: Li, Chunquan, Liao, Zhiyuan, Cheng, Yuxin, Wang, Zitao, Wu, Junyun, Liu, Ruijun, Liu, Peter X.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on consumer electronics
container_volume
creator Li, Chunquan
Liao, Zhiyuan
Cheng, Yuxin
Wang, Zitao
Wu, Junyun
Liu, Ruijun
Liu, Peter X.
description Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost.
doi_str_mv 10.1109/TCE.2025.3535157
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2025_3535157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10855609</ieee_id><sourcerecordid>10_1109_TCE_2025_3535157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629-d1166ddbe9d290b33d6ef6554dbddf23bdba3bea5d86853479fdbbf88b0a70b73</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKd3Dx7yBzqTpkkTb6V2czBxsKHHkizJFmmbkZSJ_97ODfT0wvd-z3t4ALjHaIIxEo_rspqkKKUTQgnFNL8AI0wpTzKc5pdghJDgCUGMXIObGD8RwhlN-Qh8rVbv1XLpfWN9aE14gkUH5-0--IPR8O8OX702Dfxw_Q72OwMLLfe9Oxj4bDrvouu2sGi2Pgx9CwcE_u4mVTWDK7ftZAPLRsborNvI3vnuFlxZ2URzd84xWE-rdfmSLN5m87JYJBuWikRjzJjWygidCqQI0cxYRmmmldY2JUorSZSRVHPGKclyYbVSlnOFZI5UTsYAnWY3wccYjK33wbUyfNcY1Udv9eCtPnqrz94G5OGEOGPMv3dOKUOC_AB7kWs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Chunquan ; Liao, Zhiyuan ; Cheng, Yuxin ; Wang, Zitao ; Wu, Junyun ; Liu, Ruijun ; Liu, Peter X.</creator><creatorcontrib>Li, Chunquan ; Liao, Zhiyuan ; Cheng, Yuxin ; Wang, Zitao ; Wu, Junyun ; Liu, Ruijun ; Liu, Peter X.</creatorcontrib><description>Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2025.3535157</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Adaptation models ; Brain modeling ; Brain-computer interface (BCI) ; Classification algorithms ; Computational modeling ; Electroencephalographic (EEG) ; Electroencephalography ; Feature extraction ; Noise ; Noise reduction ; Poolformer ; Steady-state visual evoked potential (SSVEP) ; Visualization</subject><ispartof>IEEE transactions on consumer electronics, 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5493-6379 ; 0000-0002-8703-6967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10855609$$EHTML$$P50$$Gieee$$H</linktohtml></links><search><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Liao, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Yuxin</creatorcontrib><creatorcontrib>Wang, Zitao</creatorcontrib><creatorcontrib>Wu, Junyun</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Liu, Peter X.</creatorcontrib><title>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Brain modeling</subject><subject>Brain-computer interface (BCI)</subject><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>Electroencephalographic (EEG)</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Poolformer</subject><subject>Steady-state visual evoked potential (SSVEP)</subject><subject>Visualization</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLwzAYhoMoOKd3Dx7yBzqTpkkTb6V2czBxsKHHkizJFmmbkZSJ_97ODfT0wvd-z3t4ALjHaIIxEo_rspqkKKUTQgnFNL8AI0wpTzKc5pdghJDgCUGMXIObGD8RwhlN-Qh8rVbv1XLpfWN9aE14gkUH5-0--IPR8O8OX702Dfxw_Q72OwMLLfe9Oxj4bDrvouu2sGi2Pgx9CwcE_u4mVTWDK7ftZAPLRsborNvI3vnuFlxZ2URzd84xWE-rdfmSLN5m87JYJBuWikRjzJjWygidCqQI0cxYRmmmldY2JUorSZSRVHPGKclyYbVSlnOFZI5UTsYAnWY3wccYjK33wbUyfNcY1Udv9eCtPnqrz94G5OGEOGPMv3dOKUOC_AB7kWs8</recordid><startdate>20250125</startdate><enddate>20250125</enddate><creator>Li, Chunquan</creator><creator>Liao, Zhiyuan</creator><creator>Cheng, Yuxin</creator><creator>Wang, Zitao</creator><creator>Wu, Junyun</creator><creator>Liu, Ruijun</creator><creator>Liu, Peter X.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid><orcidid>https://orcid.org/0000-0002-8703-6967</orcidid></search><sort><creationdate>20250125</creationdate><title>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</title><author>Li, Chunquan ; Liao, Zhiyuan ; Cheng, Yuxin ; Wang, Zitao ; Wu, Junyun ; Liu, Ruijun ; Liu, Peter X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629-d1166ddbe9d290b33d6ef6554dbddf23bdba3bea5d86853479fdbbf88b0a70b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Brain modeling</topic><topic>Brain-computer interface (BCI)</topic><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>Electroencephalographic (EEG)</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Poolformer</topic><topic>Steady-state visual evoked potential (SSVEP)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunquan</creatorcontrib><creatorcontrib>Liao, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Yuxin</creatorcontrib><creatorcontrib>Wang, Zitao</creatorcontrib><creatorcontrib>Wu, Junyun</creatorcontrib><creatorcontrib>Liu, Ruijun</creatorcontrib><creatorcontrib>Liu, Peter X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunquan</au><au>Liao, Zhiyuan</au><au>Cheng, Yuxin</au><au>Wang, Zitao</au><au>Wu, Junyun</au><au>Liu, Ruijun</au><au>Liu, Peter X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2025-01-25</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Most EEG classification algorithms based on steady-state visual evoked potentials (SSVEP-EEG) require filtering for denoising. However, manually set thresholds may inadvertently remove useful information, leading to a loss of significant signal features. Additionally, most deep learning-based SSVEP-EEG classification models have limited global feature extraction capabilities, and the self-attention mechanism in Transformers increases computational costs. To address these challenges, this paper proposes a novel SSVEP-EEG classification algorithm, SSVEPPoolformer. SSVEPPoolformer integrates an adaptive denoising algorithm with an improved Poolformer algorithm, enhancing both denoising performance and classification accuracy. The adaptive denoising algorithm dynamically adjusts the threshold using a compensation and adaptive adjustment mechanism, effectively filtering noise while retaining critical signal features. The improved Poolformer algorithm replaces the self-attention mechanism with an average pooling operation, reducing computational costs while maintaining performance. It also uses adaptive average pooling to integrate cross-channel feature information and extract global fine-grained features, improving global feature extraction. The SSVEPPoolformer model's efficacy was validated on two public datasets. Experimental results demonstrate that compared with other state-of-the-art methods, SSVEPPoolformer has higher classification accuracy and Information Transfer Rate (ITR) in both intra-class and inter-class recognition scenarios, and has lower computational cost.</abstract><pub>IEEE</pub><doi>10.1109/TCE.2025.3535157</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5493-6379</orcidid><orcidid>https://orcid.org/0000-0002-8703-6967</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2025-01, p.1-1
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2025_3535157
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Adaptation models
Brain modeling
Brain-computer interface (BCI)
Classification algorithms
Computational modeling
Electroencephalographic (EEG)
Electroencephalography
Feature extraction
Noise
Noise reduction
Poolformer
Steady-state visual evoked potential (SSVEP)
Visualization
title SSVEPPoolformer: An Improved Poolformer Model With the Adaptive Denoising Algorithm for SSVEP-EEG Signal Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T15%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SSVEPPoolformer:%20An%20Improved%20Poolformer%20Model%20With%20the%20Adaptive%20Denoising%20Algorithm%20for%20SSVEP-EEG%20Signal%20Classification&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Li,%20Chunquan&rft.date=2025-01-25&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2025.3535157&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCE_2025_3535157%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c629-d1166ddbe9d290b33d6ef6554dbddf23bdba3bea5d86853479fdbbf88b0a70b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10855609&rfr_iscdi=true