Loading…

Event-Driven Cooperative Receding Horizon Control for Multi-Agent Systems in Uncertain Environments

We propose an event-driven Cooperative Receding Horizon (CRH) controller to solve maximum reward collection problems (MRCP) where multiple agents cooperate to maximize the total reward collected from a set of targets in a given mission space. In previous work, a CRH controller was developed and in t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control of network systems 2018-03, Vol.5 (1), p.409-422
Main Authors: Khazaeni, Yasaman, Cassandras, Christos G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-3d2242d82e412ae838839266a8807491a60bc3187286ece97dacf33f17d215883
cites cdi_FETCH-LOGICAL-c308t-3d2242d82e412ae838839266a8807491a60bc3187286ece97dacf33f17d215883
container_end_page 422
container_issue 1
container_start_page 409
container_title IEEE transactions on control of network systems
container_volume 5
creator Khazaeni, Yasaman
Cassandras, Christos G.
description We propose an event-driven Cooperative Receding Horizon (CRH) controller to solve maximum reward collection problems (MRCP) where multiple agents cooperate to maximize the total reward collected from a set of targets in a given mission space. In previous work, a CRH controller was developed and in this paper, we overcome several limitations of this controller, including potential instabilities in the agent trajectories and poor performance due to inaccurate estimation of a reward-to-go function. Rewards are non-increasing functions of time and the environment is uncertain with new targets detected by agents at random time instants. The controller sequentially solves optimization problems over a planning horizon and executes the control for a shorter action horizon, where both are defined by certain events associated with new information becoming available. In contrast to the earlier CRH controller, we reduce the originally infinite-dimensional feasible control set to a finite set at each control update event. We prove some properties of this new controller and include simulation results showing its improved performance.
doi_str_mv 10.1109/TCNS.2016.2615162
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCNS_2016_2615162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7582409</ieee_id><sourcerecordid>10_1109_TCNS_2016_2615162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-3d2242d82e412ae838839266a8807491a60bc3187286ece97dacf33f17d215883</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZ-gPiSP9CZe9Om6eOo0wlTwW3PJabpiGzJSOpg_npTJuLTPYd7zuXyEXILbArAqvt1_bqaIgMxRQEFCLwgI-RYZIUs2eU_fU0mMX4yxgCL5PmI6PnRuD57CDZNWnt_MEH1ydB3o01r3ZYufLDffli6Pvgd7XygL1-73mazberS1Sn2Zh-pdXTjtAm9SmrujjZ4t0-BeEOuOrWLZvI7x2TzOF_Xi2z59vRcz5aZ5kz2GW8Rc2wlmhxQGcml5BUKoaRkZV6BEuxDc5AlSpF-q8pW6Y7zDsoWoUjhMYHzXR18jMF0zSHYvQqnBlgzgGoGUM0AqvkFlTp35441xvzly0Jizir-A0AIZLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Event-Driven Cooperative Receding Horizon Control for Multi-Agent Systems in Uncertain Environments</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Khazaeni, Yasaman ; Cassandras, Christos G.</creator><creatorcontrib>Khazaeni, Yasaman ; Cassandras, Christos G.</creatorcontrib><description>We propose an event-driven Cooperative Receding Horizon (CRH) controller to solve maximum reward collection problems (MRCP) where multiple agents cooperate to maximize the total reward collected from a set of targets in a given mission space. In previous work, a CRH controller was developed and in this paper, we overcome several limitations of this controller, including potential instabilities in the agent trajectories and poor performance due to inaccurate estimation of a reward-to-go function. Rewards are non-increasing functions of time and the environment is uncertain with new targets detected by agents at random time instants. The controller sequentially solves optimization problems over a planning horizon and executes the control for a shorter action horizon, where both are defined by certain events associated with new information becoming available. In contrast to the earlier CRH controller, we reduce the originally infinite-dimensional feasible control set to a finite set at each control update event. We prove some properties of this new controller and include simulation results showing its improved performance.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2016.2615162</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cooperative control ; event-driven control ; model predictive control ; Multi-agent systems ; Optimal control ; Optimization ; optimization algorithms ; path planning ; receding horizon control ; Space missions ; Switches ; Trajectory ; traveling salesman problem ; vehicle routing problem</subject><ispartof>IEEE transactions on control of network systems, 2018-03, Vol.5 (1), p.409-422</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-3d2242d82e412ae838839266a8807491a60bc3187286ece97dacf33f17d215883</citedby><cites>FETCH-LOGICAL-c308t-3d2242d82e412ae838839266a8807491a60bc3187286ece97dacf33f17d215883</cites><orcidid>0000-0002-4759-1528 ; 0000-0002-1625-7658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7582409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Khazaeni, Yasaman</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><title>Event-Driven Cooperative Receding Horizon Control for Multi-Agent Systems in Uncertain Environments</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>We propose an event-driven Cooperative Receding Horizon (CRH) controller to solve maximum reward collection problems (MRCP) where multiple agents cooperate to maximize the total reward collected from a set of targets in a given mission space. In previous work, a CRH controller was developed and in this paper, we overcome several limitations of this controller, including potential instabilities in the agent trajectories and poor performance due to inaccurate estimation of a reward-to-go function. Rewards are non-increasing functions of time and the environment is uncertain with new targets detected by agents at random time instants. The controller sequentially solves optimization problems over a planning horizon and executes the control for a shorter action horizon, where both are defined by certain events associated with new information becoming available. In contrast to the earlier CRH controller, we reduce the originally infinite-dimensional feasible control set to a finite set at each control update event. We prove some properties of this new controller and include simulation results showing its improved performance.</description><subject>Cooperative control</subject><subject>event-driven control</subject><subject>model predictive control</subject><subject>Multi-agent systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization algorithms</subject><subject>path planning</subject><subject>receding horizon control</subject><subject>Space missions</subject><subject>Switches</subject><subject>Trajectory</subject><subject>traveling salesman problem</subject><subject>vehicle routing problem</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMoOOZ-gPiSP9CZe9Om6eOo0wlTwW3PJabpiGzJSOpg_npTJuLTPYd7zuXyEXILbArAqvt1_bqaIgMxRQEFCLwgI-RYZIUs2eU_fU0mMX4yxgCL5PmI6PnRuD57CDZNWnt_MEH1ydB3o01r3ZYufLDffli6Pvgd7XygL1-73mazberS1Sn2Zh-pdXTjtAm9SmrujjZ4t0-BeEOuOrWLZvI7x2TzOF_Xi2z59vRcz5aZ5kz2GW8Rc2wlmhxQGcml5BUKoaRkZV6BEuxDc5AlSpF-q8pW6Y7zDsoWoUjhMYHzXR18jMF0zSHYvQqnBlgzgGoGUM0AqvkFlTp35441xvzly0Jizir-A0AIZLY</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Khazaeni, Yasaman</creator><creator>Cassandras, Christos G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4759-1528</orcidid><orcidid>https://orcid.org/0000-0002-1625-7658</orcidid></search><sort><creationdate>201803</creationdate><title>Event-Driven Cooperative Receding Horizon Control for Multi-Agent Systems in Uncertain Environments</title><author>Khazaeni, Yasaman ; Cassandras, Christos G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-3d2242d82e412ae838839266a8807491a60bc3187286ece97dacf33f17d215883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cooperative control</topic><topic>event-driven control</topic><topic>model predictive control</topic><topic>Multi-agent systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization algorithms</topic><topic>path planning</topic><topic>receding horizon control</topic><topic>Space missions</topic><topic>Switches</topic><topic>Trajectory</topic><topic>traveling salesman problem</topic><topic>vehicle routing problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khazaeni, Yasaman</creatorcontrib><creatorcontrib>Cassandras, Christos G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khazaeni, Yasaman</au><au>Cassandras, Christos G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Driven Cooperative Receding Horizon Control for Multi-Agent Systems in Uncertain Environments</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2018-03</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>409</spage><epage>422</epage><pages>409-422</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>We propose an event-driven Cooperative Receding Horizon (CRH) controller to solve maximum reward collection problems (MRCP) where multiple agents cooperate to maximize the total reward collected from a set of targets in a given mission space. In previous work, a CRH controller was developed and in this paper, we overcome several limitations of this controller, including potential instabilities in the agent trajectories and poor performance due to inaccurate estimation of a reward-to-go function. Rewards are non-increasing functions of time and the environment is uncertain with new targets detected by agents at random time instants. The controller sequentially solves optimization problems over a planning horizon and executes the control for a shorter action horizon, where both are defined by certain events associated with new information becoming available. In contrast to the earlier CRH controller, we reduce the originally infinite-dimensional feasible control set to a finite set at each control update event. We prove some properties of this new controller and include simulation results showing its improved performance.</abstract><pub>IEEE</pub><doi>10.1109/TCNS.2016.2615162</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4759-1528</orcidid><orcidid>https://orcid.org/0000-0002-1625-7658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2018-03, Vol.5 (1), p.409-422
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_crossref_primary_10_1109_TCNS_2016_2615162
source IEEE Electronic Library (IEL) Journals
subjects Cooperative control
event-driven control
model predictive control
Multi-agent systems
Optimal control
Optimization
optimization algorithms
path planning
receding horizon control
Space missions
Switches
Trajectory
traveling salesman problem
vehicle routing problem
title Event-Driven Cooperative Receding Horizon Control for Multi-Agent Systems in Uncertain Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Driven%20Cooperative%20Receding%20Horizon%20Control%20for%20Multi-Agent%20Systems%20in%20Uncertain%20Environments&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Khazaeni,%20Yasaman&rft.date=2018-03&rft.volume=5&rft.issue=1&rft.spage=409&rft.epage=422&rft.pages=409-422&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2016.2615162&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCNS_2016_2615162%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-3d2242d82e412ae838839266a8807491a60bc3187286ece97dacf33f17d215883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7582409&rfr_iscdi=true