Loading…

Antenna diversity in multiuser data networks

We consider the use of multiple antennas at the transmitter and/or the receiver to provide open-loop spatial diversity in a multiuser wireless data network. With channel quality information (CQI) available to the transmitter, and by always scheduling the transmission to the active user having the be...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2004-03, Vol.52 (3), p.490-497
Main Authors: Jing Jiang, Buehrer, R.M., Tranter, W.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the use of multiple antennas at the transmitter and/or the receiver to provide open-loop spatial diversity in a multiuser wireless data network. With channel quality information (CQI) available to the transmitter, and by always scheduling the transmission to the active user having the best channel conditions at the time of scheduling, another form of diversity, termed multiuser diversity, is obtained in a data system. This paper provides an analysis of the interaction between these two forms of diversity. From a network point of view, we prove that the asymptotic sum rate, in the limit of a large number of active homogeneous users and subject to the same average total transmit power, is inversely related to the number of transmit antennas for independent and identically distributed (i.i.d.) flat Rayleigh fading channels. In the case of i.i.d. flat Rician fading, the asymptotic sum rate also depends inversely on the number of transmit antennas, but directly on the number of receive antennas. Numerically, we show that the total diversity gain is also constrained by finite CQI quantization and channel fading statistics.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2004.823637