Loading…

Performance Analysis and Optimization for SWIPT Wireless Sensor Networks

This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive ant...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2017-05, Vol.65 (5), p.2291-2302
Main Authors: Pan, Gaofeng, Lei, Hongjiang, Yuan, Yi, Ding, Zhiguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3
cites cdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3
container_end_page 2302
container_issue 5
container_start_page 2291
container_title IEEE transactions on communications
container_volume 65
creator Pan, Gaofeng
Lei, Hongjiang
Yuan, Yi
Ding, Zhiguo
description This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system.
doi_str_mv 10.1109/TCOMM.2017.2676815
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2017_2676815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7867832</ieee_id><sourcerecordid>1901491873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</originalsourceid><addsrcrecordid>eNo9kMFqAjEURUNpodb2B9pNoOuxL5NMklmKtFWoVdDiMsT4ArE6Y5ORYr--Y5WuHjzuuVwOIfcMeoxB-TQfTMbjXg5M9XKppGbFBemwotAZ6EJdkg5ACZlUSl-Tm5TWACCA8w4ZTjH6Om5t5ZD2K7s5pJCorVZ0smvCNvzYJtQVbSN0thhN53QRIm4wJTrDKrXfd2y-6_iZbsmVt5uEd-fbJR8vz_PBMHubvI4G_bfMcV42mVj6lRNSOydcO08jKA6euVyKPBfOeem9AL-UquBWYKE0sxq4sLoUerW0vEseT727WH_tMTVmXe9jOzwZVgITJdOKt6n8lHKxTimiN7sYtjYeDANzNGb-jJmjMXM21kIPJygg4j-gtFSa5_wXQFlnPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901491873</pqid></control><display><type>article</type><title>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pan, Gaofeng ; Lei, Hongjiang ; Yuan, Yi ; Ding, Zhiguo</creator><creatorcontrib>Pan, Gaofeng ; Lei, Hongjiang ; Yuan, Yi ; Ding, Zhiguo</creatorcontrib><description>This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2017.2676815</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitive sensors ; Channels ; Computer simulation ; Distribution functions ; Energy consumption ; Energy efficiency ; Energy harvesting ; ergodic capacity ; Fading channels ; Mobile communication ; Monte Carlo simulation ; Nakagami-m fading channels ; Optimization ; outage probability ; Power transfer ; Probability density functions ; Radio broadcasting ; Receiving antennas ; Remote sensors ; Sensor systems ; Sensors ; simultaneous wireless information and power transfer ; Splitting ; throughput ; Wireless sensor networks</subject><ispartof>IEEE transactions on communications, 2017-05, Vol.65 (5), p.2291-2302</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</citedby><cites>FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</cites><orcidid>0000-0001-5280-384X ; 0000-0003-1008-5717 ; 0000-0002-9070-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7867832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Lei, Hongjiang</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Ding, Zhiguo</creatorcontrib><title>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system.</description><subject>Capacitive sensors</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>ergodic capacity</subject><subject>Fading channels</subject><subject>Mobile communication</subject><subject>Monte Carlo simulation</subject><subject>Nakagami-m fading channels</subject><subject>Optimization</subject><subject>outage probability</subject><subject>Power transfer</subject><subject>Probability density functions</subject><subject>Radio broadcasting</subject><subject>Receiving antennas</subject><subject>Remote sensors</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>simultaneous wireless information and power transfer</subject><subject>Splitting</subject><subject>throughput</subject><subject>Wireless sensor networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMFqAjEURUNpodb2B9pNoOuxL5NMklmKtFWoVdDiMsT4ArE6Y5ORYr--Y5WuHjzuuVwOIfcMeoxB-TQfTMbjXg5M9XKppGbFBemwotAZ6EJdkg5ACZlUSl-Tm5TWACCA8w4ZTjH6Om5t5ZD2K7s5pJCorVZ0smvCNvzYJtQVbSN0thhN53QRIm4wJTrDKrXfd2y-6_iZbsmVt5uEd-fbJR8vz_PBMHubvI4G_bfMcV42mVj6lRNSOydcO08jKA6euVyKPBfOeem9AL-UquBWYKE0sxq4sLoUerW0vEseT727WH_tMTVmXe9jOzwZVgITJdOKt6n8lHKxTimiN7sYtjYeDANzNGb-jJmjMXM21kIPJygg4j-gtFSa5_wXQFlnPw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Pan, Gaofeng</creator><creator>Lei, Hongjiang</creator><creator>Yuan, Yi</creator><creator>Ding, Zhiguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5280-384X</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-9070-6300</orcidid></search><sort><creationdate>20170501</creationdate><title>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</title><author>Pan, Gaofeng ; Lei, Hongjiang ; Yuan, Yi ; Ding, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitive sensors</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>ergodic capacity</topic><topic>Fading channels</topic><topic>Mobile communication</topic><topic>Monte Carlo simulation</topic><topic>Nakagami-m fading channels</topic><topic>Optimization</topic><topic>outage probability</topic><topic>Power transfer</topic><topic>Probability density functions</topic><topic>Radio broadcasting</topic><topic>Receiving antennas</topic><topic>Remote sensors</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>simultaneous wireless information and power transfer</topic><topic>Splitting</topic><topic>throughput</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Lei, Hongjiang</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Ding, Zhiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Gaofeng</au><au>Lei, Hongjiang</au><au>Yuan, Yi</au><au>Ding, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>65</volume><issue>5</issue><spage>2291</spage><epage>2302</epage><pages>2291-2302</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2017.2676815</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5280-384X</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-9070-6300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2017-05, Vol.65 (5), p.2291-2302
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2017_2676815
source IEEE Electronic Library (IEL) Journals
subjects Capacitive sensors
Channels
Computer simulation
Distribution functions
Energy consumption
Energy efficiency
Energy harvesting
ergodic capacity
Fading channels
Mobile communication
Monte Carlo simulation
Nakagami-m fading channels
Optimization
outage probability
Power transfer
Probability density functions
Radio broadcasting
Receiving antennas
Remote sensors
Sensor systems
Sensors
simultaneous wireless information and power transfer
Splitting
throughput
Wireless sensor networks
title Performance Analysis and Optimization for SWIPT Wireless Sensor Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Optimization%20for%20SWIPT%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Pan,%20Gaofeng&rft.date=2017-05-01&rft.volume=65&rft.issue=5&rft.spage=2291&rft.epage=2302&rft.pages=2291-2302&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2017.2676815&rft_dat=%3Cproquest_cross%3E1901491873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901491873&rft_id=info:pmid/&rft_ieee_id=7867832&rfr_iscdi=true