Loading…
Performance Analysis and Optimization for SWIPT Wireless Sensor Networks
This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive ant...
Saved in:
Published in: | IEEE transactions on communications 2017-05, Vol.65 (5), p.2291-2302 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3 |
container_end_page | 2302 |
container_issue | 5 |
container_start_page | 2291 |
container_title | IEEE transactions on communications |
container_volume | 65 |
creator | Pan, Gaofeng Lei, Hongjiang Yuan, Yi Ding, Zhiguo |
description | This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system. |
doi_str_mv | 10.1109/TCOMM.2017.2676815 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2017_2676815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7867832</ieee_id><sourcerecordid>1901491873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</originalsourceid><addsrcrecordid>eNo9kMFqAjEURUNpodb2B9pNoOuxL5NMklmKtFWoVdDiMsT4ArE6Y5ORYr--Y5WuHjzuuVwOIfcMeoxB-TQfTMbjXg5M9XKppGbFBemwotAZ6EJdkg5ACZlUSl-Tm5TWACCA8w4ZTjH6Om5t5ZD2K7s5pJCorVZ0smvCNvzYJtQVbSN0thhN53QRIm4wJTrDKrXfd2y-6_iZbsmVt5uEd-fbJR8vz_PBMHubvI4G_bfMcV42mVj6lRNSOydcO08jKA6euVyKPBfOeem9AL-UquBWYKE0sxq4sLoUerW0vEseT727WH_tMTVmXe9jOzwZVgITJdOKt6n8lHKxTimiN7sYtjYeDANzNGb-jJmjMXM21kIPJygg4j-gtFSa5_wXQFlnPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901491873</pqid></control><display><type>article</type><title>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pan, Gaofeng ; Lei, Hongjiang ; Yuan, Yi ; Ding, Zhiguo</creator><creatorcontrib>Pan, Gaofeng ; Lei, Hongjiang ; Yuan, Yi ; Ding, Zhiguo</creatorcontrib><description>This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2017.2676815</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitive sensors ; Channels ; Computer simulation ; Distribution functions ; Energy consumption ; Energy efficiency ; Energy harvesting ; ergodic capacity ; Fading channels ; Mobile communication ; Monte Carlo simulation ; Nakagami-m fading channels ; Optimization ; outage probability ; Power transfer ; Probability density functions ; Radio broadcasting ; Receiving antennas ; Remote sensors ; Sensor systems ; Sensors ; simultaneous wireless information and power transfer ; Splitting ; throughput ; Wireless sensor networks</subject><ispartof>IEEE transactions on communications, 2017-05, Vol.65 (5), p.2291-2302</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</citedby><cites>FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</cites><orcidid>0000-0001-5280-384X ; 0000-0003-1008-5717 ; 0000-0002-9070-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7867832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Lei, Hongjiang</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Ding, Zhiguo</creatorcontrib><title>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system.</description><subject>Capacitive sensors</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>ergodic capacity</subject><subject>Fading channels</subject><subject>Mobile communication</subject><subject>Monte Carlo simulation</subject><subject>Nakagami-m fading channels</subject><subject>Optimization</subject><subject>outage probability</subject><subject>Power transfer</subject><subject>Probability density functions</subject><subject>Radio broadcasting</subject><subject>Receiving antennas</subject><subject>Remote sensors</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>simultaneous wireless information and power transfer</subject><subject>Splitting</subject><subject>throughput</subject><subject>Wireless sensor networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMFqAjEURUNpodb2B9pNoOuxL5NMklmKtFWoVdDiMsT4ArE6Y5ORYr--Y5WuHjzuuVwOIfcMeoxB-TQfTMbjXg5M9XKppGbFBemwotAZ6EJdkg5ACZlUSl-Tm5TWACCA8w4ZTjH6Om5t5ZD2K7s5pJCorVZ0smvCNvzYJtQVbSN0thhN53QRIm4wJTrDKrXfd2y-6_iZbsmVt5uEd-fbJR8vz_PBMHubvI4G_bfMcV42mVj6lRNSOydcO08jKA6euVyKPBfOeem9AL-UquBWYKE0sxq4sLoUerW0vEseT727WH_tMTVmXe9jOzwZVgITJdOKt6n8lHKxTimiN7sYtjYeDANzNGb-jJmjMXM21kIPJygg4j-gtFSa5_wXQFlnPw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Pan, Gaofeng</creator><creator>Lei, Hongjiang</creator><creator>Yuan, Yi</creator><creator>Ding, Zhiguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5280-384X</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-9070-6300</orcidid></search><sort><creationdate>20170501</creationdate><title>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</title><author>Pan, Gaofeng ; Lei, Hongjiang ; Yuan, Yi ; Ding, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitive sensors</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>ergodic capacity</topic><topic>Fading channels</topic><topic>Mobile communication</topic><topic>Monte Carlo simulation</topic><topic>Nakagami-m fading channels</topic><topic>Optimization</topic><topic>outage probability</topic><topic>Power transfer</topic><topic>Probability density functions</topic><topic>Radio broadcasting</topic><topic>Receiving antennas</topic><topic>Remote sensors</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>simultaneous wireless information and power transfer</topic><topic>Splitting</topic><topic>throughput</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Lei, Hongjiang</creatorcontrib><creatorcontrib>Yuan, Yi</creatorcontrib><creatorcontrib>Ding, Zhiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Gaofeng</au><au>Lei, Hongjiang</au><au>Yuan, Yi</au><au>Ding, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Optimization for SWIPT Wireless Sensor Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>65</volume><issue>5</issue><spage>2291</spage><epage>2302</epage><pages>2291-2302</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper investigates and optimizes the performance of simultaneous wireless information and power transfer (SWIPT) in wireless sensor networks over Nakagami-m fading channels. In the considered system, there is one mobile reader (R), which is equipped with one transmit antenna and one receive antenna, and a group of passive sensors. The information delivery includes two stages: (1) R broadcasts a command with radio-frequency energy to the sensors, which adopt time splitting (TS)/power splitting (PS) schemes to harvest energy and (2) sensors deliver their information to R over orthogonal channels by using the harvested energy. In this paper, we propose a unified framework to study and optimize the impact of SWIPT on the system performance with both TS and PS schemes. First, we characterize the probability density function and cumulative distribution function of the signal-to-interference-plus-noise-ratio in high signal-to-noise ratio region, then we study the outage and ergodic capacity performance of the backward links. The approximated closed-form expressions for the outage probability and ergodic capacity are derived and validated through Monte Carlo simulations. Finally, we also evaluate the energy efficiency of the target system, and propose an optimal splitting scheme for TS and PS to maximize the throughput of the target system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2017.2676815</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5280-384X</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-9070-6300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2017-05, Vol.65 (5), p.2291-2302 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2017_2676815 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Capacitive sensors Channels Computer simulation Distribution functions Energy consumption Energy efficiency Energy harvesting ergodic capacity Fading channels Mobile communication Monte Carlo simulation Nakagami-m fading channels Optimization outage probability Power transfer Probability density functions Radio broadcasting Receiving antennas Remote sensors Sensor systems Sensors simultaneous wireless information and power transfer Splitting throughput Wireless sensor networks |
title | Performance Analysis and Optimization for SWIPT Wireless Sensor Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Optimization%20for%20SWIPT%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Pan,%20Gaofeng&rft.date=2017-05-01&rft.volume=65&rft.issue=5&rft.spage=2291&rft.epage=2302&rft.pages=2291-2302&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2017.2676815&rft_dat=%3Cproquest_cross%3E1901491873%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-4bfdc468cc4c5588e0730f1c264224ccf6ff40fb6753a4e5781a8034a8948dba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901491873&rft_id=info:pmid/&rft_ieee_id=7867832&rfr_iscdi=true |