Loading…

Secure Hybrid VLC-RF Systems With Light Energy Harvesting

In this paper, a hybrid visible light communication-radio frequency (RF) system, including a legitimate receiver (R) and an eavesdropper (E) is considered. R can harvest energy from the light emitted by light emitting diodes (LEDs), which is used for the information transmission between R and the RF...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2017-10, Vol.65 (10), p.4348-4359
Main Authors: Pan, Gaofeng, Ye, Jia, Ding, Zhiguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a hybrid visible light communication-radio frequency (RF) system, including a legitimate receiver (R) and an eavesdropper (E) is considered. R can harvest energy from the light emitted by light emitting diodes (LEDs), which is used for the information transmission between R and the RF receiver which is close to the LED. It is assumed that E tries to eavesdrop the information delivered from R to the RF receiver and R is with finite energy storage. Considering the randomness of the locations of R and E, the statistical characteristics of the received signal-to-noise ratio at the RF receiver and E are characterized; then, we derive the analytical expressions for exact and asymptotic secrecy outage probability by using the stochastic geometry method. Finally, simulations are carried out to verify our proposed analytical models.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2017.2709314