Loading…
Secure Hybrid VLC-RF Systems With Light Energy Harvesting
In this paper, a hybrid visible light communication-radio frequency (RF) system, including a legitimate receiver (R) and an eavesdropper (E) is considered. R can harvest energy from the light emitted by light emitting diodes (LEDs), which is used for the information transmission between R and the RF...
Saved in:
Published in: | IEEE transactions on communications 2017-10, Vol.65 (10), p.4348-4359 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a hybrid visible light communication-radio frequency (RF) system, including a legitimate receiver (R) and an eavesdropper (E) is considered. R can harvest energy from the light emitted by light emitting diodes (LEDs), which is used for the information transmission between R and the RF receiver which is close to the LED. It is assumed that E tries to eavesdrop the information delivered from R to the RF receiver and R is with finite energy storage. Considering the randomness of the locations of R and E, the statistical characteristics of the received signal-to-noise ratio at the RF receiver and E are characterized; then, we derive the analytical expressions for exact and asymptotic secrecy outage probability by using the stochastic geometry method. Finally, simulations are carried out to verify our proposed analytical models. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2017.2709314 |