Loading…

The κ-μ / Inverse Gamma and η-μ / Inverse Gamma Composite Fading Models: Fundamental Statistics and Empirical Validation

The \kappa - \mu / inverse gamma and \eta - \mu / inverse gamma composite fading models are presented and extensively investigated in this paper. We derive closed-form expressions for the fundamental statistics of the \kappa - \mu / inverse gamma composite fading model, such as the probability...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2021-08, Vol.69 (8), p.5514-5530
Main Authors: Yoo, Seong Ki, Simmons, Nidhi, Cotton, Simon L., Sofotasios, Paschalis C., Matthaiou, Michail, Valkama, Mikko, Karagiannidis, George K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-9bd560dfc7c0d0a07c0f2c21e6d61e81033dd33e35519a06f5a81bafad1cf52f3
cites cdi_FETCH-LOGICAL-c339t-9bd560dfc7c0d0a07c0f2c21e6d61e81033dd33e35519a06f5a81bafad1cf52f3
container_end_page 5530
container_issue 8
container_start_page 5514
container_title IEEE transactions on communications
container_volume 69
creator Yoo, Seong Ki
Simmons, Nidhi
Cotton, Simon L.
Sofotasios, Paschalis C.
Matthaiou, Michail
Valkama, Mikko
Karagiannidis, George K.
description The \kappa - \mu / inverse gamma and \eta - \mu / inverse gamma composite fading models are presented and extensively investigated in this paper. We derive closed-form expressions for the fundamental statistics of the \kappa - \mu / inverse gamma composite fading model, such as the probability density function (PDF), cumulative distribution function (CDF). Additionally, we solve the associated integral that is commonly used to obtain the moment generating function (MGF) of statistical distributions to provide an MGF-type function which is valid for performance analysis over the specified parameter space. Analytic expressions for the PDF, higher order moments and AF are also derived for the \eta - \mu / inverse gamma composite fading model, while infinite series expressions are obtained for the corresponding CDF and MGF-type function. The suitability of the new models for characterizing composite fading channels is demonstrated through a series of extensive field measurements for wearable, cellular, and vehicular communications. For all of the measurements, two propagation geometry problems with special relevance to the two new composite fading models, namely the line-of-sight (LOS) and non-LOS (NLOS) channel conditions, are considered. It is found that both the \kappa - \mu / inverse gamma and \eta - \mu / inverse gamma composite fading models provide an excellent fit to fading conditions encountered in the field. The goodness-of-fit of these two composite fading models is also evaluated and compared using the resistor-average distance. As a result, it is shown that the
doi_str_mv 10.1109/TCOMM.2017.2780110
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2017_2780110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8166770</ieee_id><sourcerecordid>2560916922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9bd560dfc7c0d0a07c0f2c21e6d61e81033dd33e35519a06f5a81bafad1cf52f3</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKsvoJuA62lPEjMXdzLYWmjpwuo2pJNEU-ZmMhUE30sQn6HPZHrBlasD578czofQJYEBIZANF_l8NhtQIMmAJimE3RHqEc7TCFKeHKMeQAZRnCTpKTrzfgUAN8BYD30uXjXefEebHzzEk_pdO6_xWFaVxLJWePP1n5I3Vdt422k8ksrWL3jWKF36Wzxa10pWuu5kiR872Vnf2cLvmu6r1jpbBOFZllYFranP0YmRpdcXh9lHT6P7Rf4QTefjSX43jQrGsi7KlorHoEyRFKBAQhiGFpToWMVEpyQ8ohRjmnFOMgmx4TIlS2mkIoXh1LA-ut73tq55W2vfiVWzdnU4KWhozkicURpcdO8qXOO900a0zlbSfQgCYktZ7CiLLWVxoBxCV_uQ1Vr_BVISB9bAfgFytnvD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560916922</pqid></control><display><type>article</type><title>The κ-μ / Inverse Gamma and η-μ / Inverse Gamma Composite Fading Models: Fundamental Statistics and Empirical Validation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yoo, Seong Ki ; Simmons, Nidhi ; Cotton, Simon L. ; Sofotasios, Paschalis C. ; Matthaiou, Michail ; Valkama, Mikko ; Karagiannidis, George K.</creator><creatorcontrib>Yoo, Seong Ki ; Simmons, Nidhi ; Cotton, Simon L. ; Sofotasios, Paschalis C. ; Matthaiou, Michail ; Valkama, Mikko ; Karagiannidis, George K.</creatorcontrib><description><![CDATA[The <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma and <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading models are presented and extensively investigated in this paper. We derive closed-form expressions for the fundamental statistics of the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model, such as the probability density function (PDF), cumulative distribution function (CDF). Additionally, we solve the associated integral that is commonly used to obtain the moment generating function (MGF) of statistical distributions to provide an MGF-type function which is valid for performance analysis over the specified parameter space. Analytic expressions for the PDF, higher order moments and AF are also derived for the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model, while infinite series expressions are obtained for the corresponding CDF and MGF-type function. The suitability of the new models for characterizing composite fading channels is demonstrated through a series of extensive field measurements for wearable, cellular, and vehicular communications. For all of the measurements, two propagation geometry problems with special relevance to the two new composite fading models, namely the line-of-sight (LOS) and non-LOS (NLOS) channel conditions, are considered. It is found that both the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma and <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading models provide an excellent fit to fading conditions encountered in the field. The goodness-of-fit of these two composite fading models is also evaluated and compared using the resistor-average distance. As a result, it is shown that the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model provides a better fit compared to the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model when strong dominant signal components exist. On the contrary, the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model outperforms the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model when there is no strong dominant signal component and/or the parameter <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> is not equal to unity, indicating that the scattered wave power of the in-phase and quadrature components of each cluster of multipath are not identical.]]></description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2017.2780110</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;η-μ fading model ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;κ-μ fading model ; Biological system modeling ; Channel modeling ; Closed-form solutions ; composite fading channel ; Computational modeling ; Distribution functions ; Empirical analysis ; Exact solutions ; Fading ; Fading channels ; Goodness of fit ; Infinite series ; inverse gamma distribution ; Inverse problems ; Line of sight ; Mathematical models ; Parameters ; Probability density function ; Probability density functions ; Quadratures ; resistor-average distance ; Shadow mapping ; Statistical analysis ; Statistical distributions ; Wave power</subject><ispartof>IEEE transactions on communications, 2021-08, Vol.69 (8), p.5514-5530</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9bd560dfc7c0d0a07c0f2c21e6d61e81033dd33e35519a06f5a81bafad1cf52f3</citedby><cites>FETCH-LOGICAL-c339t-9bd560dfc7c0d0a07c0f2c21e6d61e81033dd33e35519a06f5a81bafad1cf52f3</cites><orcidid>0000-0003-0361-0800 ; 0000-0002-8076-9607 ; 0000-0001-9235-7741 ; 0000-0003-2620-6501 ; 0000-0001-8389-0966 ; 0000-0001-5126-5090 ; 0000-0001-8810-0345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8166770$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yoo, Seong Ki</creatorcontrib><creatorcontrib>Simmons, Nidhi</creatorcontrib><creatorcontrib>Cotton, Simon L.</creatorcontrib><creatorcontrib>Sofotasios, Paschalis C.</creatorcontrib><creatorcontrib>Matthaiou, Michail</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><title>The κ-μ / Inverse Gamma and η-μ / Inverse Gamma Composite Fading Models: Fundamental Statistics and Empirical Validation</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description><![CDATA[The <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma and <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading models are presented and extensively investigated in this paper. We derive closed-form expressions for the fundamental statistics of the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model, such as the probability density function (PDF), cumulative distribution function (CDF). Additionally, we solve the associated integral that is commonly used to obtain the moment generating function (MGF) of statistical distributions to provide an MGF-type function which is valid for performance analysis over the specified parameter space. Analytic expressions for the PDF, higher order moments and AF are also derived for the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model, while infinite series expressions are obtained for the corresponding CDF and MGF-type function. The suitability of the new models for characterizing composite fading channels is demonstrated through a series of extensive field measurements for wearable, cellular, and vehicular communications. For all of the measurements, two propagation geometry problems with special relevance to the two new composite fading models, namely the line-of-sight (LOS) and non-LOS (NLOS) channel conditions, are considered. It is found that both the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma and <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading models provide an excellent fit to fading conditions encountered in the field. The goodness-of-fit of these two composite fading models is also evaluated and compared using the resistor-average distance. As a result, it is shown that the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model provides a better fit compared to the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model when strong dominant signal components exist. On the contrary, the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model outperforms the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model when there is no strong dominant signal component and/or the parameter <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> is not equal to unity, indicating that the scattered wave power of the in-phase and quadrature components of each cluster of multipath are not identical.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;η-μ fading model</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;κ-μ fading model</subject><subject>Biological system modeling</subject><subject>Channel modeling</subject><subject>Closed-form solutions</subject><subject>composite fading channel</subject><subject>Computational modeling</subject><subject>Distribution functions</subject><subject>Empirical analysis</subject><subject>Exact solutions</subject><subject>Fading</subject><subject>Fading channels</subject><subject>Goodness of fit</subject><subject>Infinite series</subject><subject>inverse gamma distribution</subject><subject>Inverse problems</subject><subject>Line of sight</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Quadratures</subject><subject>resistor-average distance</subject><subject>Shadow mapping</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Wave power</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNptkMtKAzEUhoMoWKsvoJuA62lPEjMXdzLYWmjpwuo2pJNEU-ZmMhUE30sQn6HPZHrBlasD578czofQJYEBIZANF_l8NhtQIMmAJimE3RHqEc7TCFKeHKMeQAZRnCTpKTrzfgUAN8BYD30uXjXefEebHzzEk_pdO6_xWFaVxLJWePP1n5I3Vdt422k8ksrWL3jWKF36Wzxa10pWuu5kiR872Vnf2cLvmu6r1jpbBOFZllYFranP0YmRpdcXh9lHT6P7Rf4QTefjSX43jQrGsi7KlorHoEyRFKBAQhiGFpToWMVEpyQ8ohRjmnFOMgmx4TIlS2mkIoXh1LA-ut73tq55W2vfiVWzdnU4KWhozkicURpcdO8qXOO900a0zlbSfQgCYktZ7CiLLWVxoBxCV_uQ1Vr_BVISB9bAfgFytnvD</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Yoo, Seong Ki</creator><creator>Simmons, Nidhi</creator><creator>Cotton, Simon L.</creator><creator>Sofotasios, Paschalis C.</creator><creator>Matthaiou, Michail</creator><creator>Valkama, Mikko</creator><creator>Karagiannidis, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0002-8076-9607</orcidid><orcidid>https://orcid.org/0000-0001-9235-7741</orcidid><orcidid>https://orcid.org/0000-0003-2620-6501</orcidid><orcidid>https://orcid.org/0000-0001-8389-0966</orcidid><orcidid>https://orcid.org/0000-0001-5126-5090</orcidid><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid></search><sort><creationdate>20210801</creationdate><title>The κ-μ / Inverse Gamma and η-μ / Inverse Gamma Composite Fading Models: Fundamental Statistics and Empirical Validation</title><author>Yoo, Seong Ki ; Simmons, Nidhi ; Cotton, Simon L. ; Sofotasios, Paschalis C. ; Matthaiou, Michail ; Valkama, Mikko ; Karagiannidis, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9bd560dfc7c0d0a07c0f2c21e6d61e81033dd33e35519a06f5a81bafad1cf52f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;η-μ fading model</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;κ-μ fading model</topic><topic>Biological system modeling</topic><topic>Channel modeling</topic><topic>Closed-form solutions</topic><topic>composite fading channel</topic><topic>Computational modeling</topic><topic>Distribution functions</topic><topic>Empirical analysis</topic><topic>Exact solutions</topic><topic>Fading</topic><topic>Fading channels</topic><topic>Goodness of fit</topic><topic>Infinite series</topic><topic>inverse gamma distribution</topic><topic>Inverse problems</topic><topic>Line of sight</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Quadratures</topic><topic>resistor-average distance</topic><topic>Shadow mapping</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Seong Ki</creatorcontrib><creatorcontrib>Simmons, Nidhi</creatorcontrib><creatorcontrib>Cotton, Simon L.</creatorcontrib><creatorcontrib>Sofotasios, Paschalis C.</creatorcontrib><creatorcontrib>Matthaiou, Michail</creatorcontrib><creatorcontrib>Valkama, Mikko</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Seong Ki</au><au>Simmons, Nidhi</au><au>Cotton, Simon L.</au><au>Sofotasios, Paschalis C.</au><au>Matthaiou, Michail</au><au>Valkama, Mikko</au><au>Karagiannidis, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The κ-μ / Inverse Gamma and η-μ / Inverse Gamma Composite Fading Models: Fundamental Statistics and Empirical Validation</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>69</volume><issue>8</issue><spage>5514</spage><epage>5530</epage><pages>5514-5530</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract><![CDATA[The <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma and <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading models are presented and extensively investigated in this paper. We derive closed-form expressions for the fundamental statistics of the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model, such as the probability density function (PDF), cumulative distribution function (CDF). Additionally, we solve the associated integral that is commonly used to obtain the moment generating function (MGF) of statistical distributions to provide an MGF-type function which is valid for performance analysis over the specified parameter space. Analytic expressions for the PDF, higher order moments and AF are also derived for the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model, while infinite series expressions are obtained for the corresponding CDF and MGF-type function. The suitability of the new models for characterizing composite fading channels is demonstrated through a series of extensive field measurements for wearable, cellular, and vehicular communications. For all of the measurements, two propagation geometry problems with special relevance to the two new composite fading models, namely the line-of-sight (LOS) and non-LOS (NLOS) channel conditions, are considered. It is found that both the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma and <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading models provide an excellent fit to fading conditions encountered in the field. The goodness-of-fit of these two composite fading models is also evaluated and compared using the resistor-average distance. As a result, it is shown that the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model provides a better fit compared to the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model when strong dominant signal components exist. On the contrary, the <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model outperforms the <inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> / inverse gamma composite fading model when there is no strong dominant signal component and/or the parameter <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> is not equal to unity, indicating that the scattered wave power of the in-phase and quadrature components of each cluster of multipath are not identical.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2017.2780110</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0361-0800</orcidid><orcidid>https://orcid.org/0000-0002-8076-9607</orcidid><orcidid>https://orcid.org/0000-0001-9235-7741</orcidid><orcidid>https://orcid.org/0000-0003-2620-6501</orcidid><orcidid>https://orcid.org/0000-0001-8389-0966</orcidid><orcidid>https://orcid.org/0000-0001-5126-5090</orcidid><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2021-08, Vol.69 (8), p.5514-5530
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2017_2780110
source IEEE Electronic Library (IEL) Journals
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">η-μ fading model
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">κ-μ fading model
Biological system modeling
Channel modeling
Closed-form solutions
composite fading channel
Computational modeling
Distribution functions
Empirical analysis
Exact solutions
Fading
Fading channels
Goodness of fit
Infinite series
inverse gamma distribution
Inverse problems
Line of sight
Mathematical models
Parameters
Probability density function
Probability density functions
Quadratures
resistor-average distance
Shadow mapping
Statistical analysis
Statistical distributions
Wave power
title The κ-μ / Inverse Gamma and η-μ / Inverse Gamma Composite Fading Models: Fundamental Statistics and Empirical Validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%CE%BA-%CE%BC%20/%20Inverse%20Gamma%20and%20%CE%B7-%CE%BC%20/%20Inverse%20Gamma%20Composite%20Fading%20Models:%20Fundamental%20Statistics%20and%20Empirical%20Validation&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Yoo,%20Seong%20Ki&rft.date=2021-08-01&rft.volume=69&rft.issue=8&rft.spage=5514&rft.epage=5530&rft.pages=5514-5530&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2017.2780110&rft_dat=%3Cproquest_cross%3E2560916922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-9bd560dfc7c0d0a07c0f2c21e6d61e81033dd33e35519a06f5a81bafad1cf52f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560916922&rft_id=info:pmid/&rft_ieee_id=8166770&rfr_iscdi=true