Loading…
Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks
Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level,...
Saved in:
Published in: | IEEE transactions on communications 2024-03, Vol.72 (3), p.1612-1624 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33 |
container_end_page | 1624 |
container_issue | 3 |
container_start_page | 1612 |
container_title | IEEE transactions on communications |
container_volume | 72 |
creator | Lopez, Onel L. A. Brante, Glauber Souza, Richard Demo Juntti, Markku Latva-Aho, Matti |
description | Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices K . Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting K . Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with K , and its distribution approximates that of the sum of a Student's t and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions. |
doi_str_mv | 10.1109/TCOMM.2023.3337242 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2023_3337242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10329354</ieee_id><sourcerecordid>2969044333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</originalsourceid><addsrcrecordid>eNpNkM1OAjEURhujiYi-gHHRxPXgbTudmS4N_pGAmDCumzJzB4swxbZgeHtHYeHqbs75cnMIuWYwYAzUXTmcTiYDDlwMhBA5T_kJ6TEpiwQKmZ-SHoCCJMvz4pxchLAEgBSE6BE9dM7XtjURa_pmVy7S0ps2rG0I1rWBNs7TB4xYRdsuaPxAOrOL1qzobGN8sHFPx7jDFbUtnZjO2SEduZK-Yvx2_jNckrPGrAJeHW-fvD89lsOXZDx9Hg3vx0klUoiJwJzVWS3NXClVGcbkvObF3CiJhkGBRS1kxrNCcsiaSqKqQDZKMlazjqqF6JPbw-7Gu68thqiXbuu7P4PmKlOQpl2XjuIHqvIuBI-N3ni7Nn6vGejfkPovpP4NqY8hO-nmIFlE_CcIroRMxQ8N_m-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969044333</pqid></control><display><type>article</type><title>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lopez, Onel L. A. ; Brante, Glauber ; Souza, Richard Demo ; Juntti, Markku ; Latva-Aho, Matti</creator><creatorcontrib>Lopez, Onel L. A. ; Brante, Glauber ; Souza, Richard Demo ; Juntti, Markku ; Latva-Aho, Matti</creatorcontrib><description><![CDATA[Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>, and its distribution approximates that of the sum of a Student's <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions.]]></description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3337242</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel estimation ; compressed sensing ; Data processing ; Fading ; Feature extraction ; grant-free random access ; Inference algorithms ; Internet of Things ; Massive IoT ; Matching pursuit algorithms ; Mathematical analysis ; Mud ; multi-user detection ; Multiuser detection ; Networks ; Random access ; Random variables ; signal sparsity level ; Sparsity ; Symbols</subject><ispartof>IEEE transactions on communications, 2024-03, Vol.72 (3), p.1612-1624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</citedby><cites>FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</cites><orcidid>0000-0003-1838-5183 ; 0000-0002-5413-1896 ; 0000-0002-6261-0969 ; 0000-0001-6006-4274 ; 0000-0002-7389-6245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10329354$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Brante, Glauber</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Juntti, Markku</creatorcontrib><creatorcontrib>Latva-Aho, Matti</creatorcontrib><title>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description><![CDATA[Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>, and its distribution approximates that of the sum of a Student's <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions.]]></description><subject>Channel estimation</subject><subject>compressed sensing</subject><subject>Data processing</subject><subject>Fading</subject><subject>Feature extraction</subject><subject>grant-free random access</subject><subject>Inference algorithms</subject><subject>Internet of Things</subject><subject>Massive IoT</subject><subject>Matching pursuit algorithms</subject><subject>Mathematical analysis</subject><subject>Mud</subject><subject>multi-user detection</subject><subject>Multiuser detection</subject><subject>Networks</subject><subject>Random access</subject><subject>Random variables</subject><subject>signal sparsity level</subject><subject>Sparsity</subject><subject>Symbols</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkM1OAjEURhujiYi-gHHRxPXgbTudmS4N_pGAmDCumzJzB4swxbZgeHtHYeHqbs75cnMIuWYwYAzUXTmcTiYDDlwMhBA5T_kJ6TEpiwQKmZ-SHoCCJMvz4pxchLAEgBSE6BE9dM7XtjURa_pmVy7S0ps2rG0I1rWBNs7TB4xYRdsuaPxAOrOL1qzobGN8sHFPx7jDFbUtnZjO2SEduZK-Yvx2_jNckrPGrAJeHW-fvD89lsOXZDx9Hg3vx0klUoiJwJzVWS3NXClVGcbkvObF3CiJhkGBRS1kxrNCcsiaSqKqQDZKMlazjqqF6JPbw-7Gu68thqiXbuu7P4PmKlOQpl2XjuIHqvIuBI-N3ni7Nn6vGejfkPovpP4NqY8hO-nmIFlE_CcIroRMxQ8N_m-8</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Lopez, Onel L. A.</creator><creator>Brante, Glauber</creator><creator>Souza, Richard Demo</creator><creator>Juntti, Markku</creator><creator>Latva-Aho, Matti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid><orcidid>https://orcid.org/0000-0002-5413-1896</orcidid><orcidid>https://orcid.org/0000-0002-6261-0969</orcidid><orcidid>https://orcid.org/0000-0001-6006-4274</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid></search><sort><creationdate>20240301</creationdate><title>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</title><author>Lopez, Onel L. A. ; Brante, Glauber ; Souza, Richard Demo ; Juntti, Markku ; Latva-Aho, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel estimation</topic><topic>compressed sensing</topic><topic>Data processing</topic><topic>Fading</topic><topic>Feature extraction</topic><topic>grant-free random access</topic><topic>Inference algorithms</topic><topic>Internet of Things</topic><topic>Massive IoT</topic><topic>Matching pursuit algorithms</topic><topic>Mathematical analysis</topic><topic>Mud</topic><topic>multi-user detection</topic><topic>Multiuser detection</topic><topic>Networks</topic><topic>Random access</topic><topic>Random variables</topic><topic>signal sparsity level</topic><topic>Sparsity</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Brante, Glauber</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Juntti, Markku</creatorcontrib><creatorcontrib>Latva-Aho, Matti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Onel L. A.</au><au>Brante, Glauber</au><au>Souza, Richard Demo</au><au>Juntti, Markku</au><au>Latva-Aho, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>72</volume><issue>3</issue><spage>1612</spage><epage>1624</epage><pages>1612-1624</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract><![CDATA[Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>, and its distribution approximates that of the sum of a Student's <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3337242</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid><orcidid>https://orcid.org/0000-0002-5413-1896</orcidid><orcidid>https://orcid.org/0000-0002-6261-0969</orcidid><orcidid>https://orcid.org/0000-0001-6006-4274</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2024-03, Vol.72 (3), p.1612-1624 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2023_3337242 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Channel estimation compressed sensing Data processing Fading Feature extraction grant-free random access Inference algorithms Internet of Things Massive IoT Matching pursuit algorithms Mathematical analysis Mud multi-user detection Multiuser detection Networks Random access Random variables signal sparsity level Sparsity Symbols |
title | Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T17%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20Pilot%20Transmissions%20for%20Detecting%20the%20Signal%20Sparsity%20Level%20in%20Massive%20IoT%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Lopez,%20Onel%20L.%20A.&rft.date=2024-03-01&rft.volume=72&rft.issue=3&rft.spage=1612&rft.epage=1624&rft.pages=1612-1624&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3337242&rft_dat=%3Cproquest_cross%3E2969044333%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969044333&rft_id=info:pmid/&rft_ieee_id=10329354&rfr_iscdi=true |