Loading…

Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks

Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2024-03, Vol.72 (3), p.1612-1624
Main Authors: Lopez, Onel L. A., Brante, Glauber, Souza, Richard Demo, Juntti, Markku, Latva-Aho, Matti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33
cites cdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33
container_end_page 1624
container_issue 3
container_start_page 1612
container_title IEEE transactions on communications
container_volume 72
creator Lopez, Onel L. A.
Brante, Glauber
Souza, Richard Demo
Juntti, Markku
Latva-Aho, Matti
description Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices K . Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting K . Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with K , and its distribution approximates that of the sum of a Student's t and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions.
doi_str_mv 10.1109/TCOMM.2023.3337242
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2023_3337242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10329354</ieee_id><sourcerecordid>2969044333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</originalsourceid><addsrcrecordid>eNpNkM1OAjEURhujiYi-gHHRxPXgbTudmS4N_pGAmDCumzJzB4swxbZgeHtHYeHqbs75cnMIuWYwYAzUXTmcTiYDDlwMhBA5T_kJ6TEpiwQKmZ-SHoCCJMvz4pxchLAEgBSE6BE9dM7XtjURa_pmVy7S0ps2rG0I1rWBNs7TB4xYRdsuaPxAOrOL1qzobGN8sHFPx7jDFbUtnZjO2SEduZK-Yvx2_jNckrPGrAJeHW-fvD89lsOXZDx9Hg3vx0klUoiJwJzVWS3NXClVGcbkvObF3CiJhkGBRS1kxrNCcsiaSqKqQDZKMlazjqqF6JPbw-7Gu68thqiXbuu7P4PmKlOQpl2XjuIHqvIuBI-N3ni7Nn6vGejfkPovpP4NqY8hO-nmIFlE_CcIroRMxQ8N_m-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969044333</pqid></control><display><type>article</type><title>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lopez, Onel L. A. ; Brante, Glauber ; Souza, Richard Demo ; Juntti, Markku ; Latva-Aho, Matti</creator><creatorcontrib>Lopez, Onel L. A. ; Brante, Glauber ; Souza, Richard Demo ; Juntti, Markku ; Latva-Aho, Matti</creatorcontrib><description><![CDATA[Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>, and its distribution approximates that of the sum of a Student's <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions.]]></description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3337242</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel estimation ; compressed sensing ; Data processing ; Fading ; Feature extraction ; grant-free random access ; Inference algorithms ; Internet of Things ; Massive IoT ; Matching pursuit algorithms ; Mathematical analysis ; Mud ; multi-user detection ; Multiuser detection ; Networks ; Random access ; Random variables ; signal sparsity level ; Sparsity ; Symbols</subject><ispartof>IEEE transactions on communications, 2024-03, Vol.72 (3), p.1612-1624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</citedby><cites>FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</cites><orcidid>0000-0003-1838-5183 ; 0000-0002-5413-1896 ; 0000-0002-6261-0969 ; 0000-0001-6006-4274 ; 0000-0002-7389-6245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10329354$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Brante, Glauber</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Juntti, Markku</creatorcontrib><creatorcontrib>Latva-Aho, Matti</creatorcontrib><title>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description><![CDATA[Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>, and its distribution approximates that of the sum of a Student's <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions.]]></description><subject>Channel estimation</subject><subject>compressed sensing</subject><subject>Data processing</subject><subject>Fading</subject><subject>Feature extraction</subject><subject>grant-free random access</subject><subject>Inference algorithms</subject><subject>Internet of Things</subject><subject>Massive IoT</subject><subject>Matching pursuit algorithms</subject><subject>Mathematical analysis</subject><subject>Mud</subject><subject>multi-user detection</subject><subject>Multiuser detection</subject><subject>Networks</subject><subject>Random access</subject><subject>Random variables</subject><subject>signal sparsity level</subject><subject>Sparsity</subject><subject>Symbols</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkM1OAjEURhujiYi-gHHRxPXgbTudmS4N_pGAmDCumzJzB4swxbZgeHtHYeHqbs75cnMIuWYwYAzUXTmcTiYDDlwMhBA5T_kJ6TEpiwQKmZ-SHoCCJMvz4pxchLAEgBSE6BE9dM7XtjURa_pmVy7S0ps2rG0I1rWBNs7TB4xYRdsuaPxAOrOL1qzobGN8sHFPx7jDFbUtnZjO2SEduZK-Yvx2_jNckrPGrAJeHW-fvD89lsOXZDx9Hg3vx0klUoiJwJzVWS3NXClVGcbkvObF3CiJhkGBRS1kxrNCcsiaSqKqQDZKMlazjqqF6JPbw-7Gu68thqiXbuu7P4PmKlOQpl2XjuIHqvIuBI-N3ni7Nn6vGejfkPovpP4NqY8hO-nmIFlE_CcIroRMxQ8N_m-8</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Lopez, Onel L. A.</creator><creator>Brante, Glauber</creator><creator>Souza, Richard Demo</creator><creator>Juntti, Markku</creator><creator>Latva-Aho, Matti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid><orcidid>https://orcid.org/0000-0002-5413-1896</orcidid><orcidid>https://orcid.org/0000-0002-6261-0969</orcidid><orcidid>https://orcid.org/0000-0001-6006-4274</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid></search><sort><creationdate>20240301</creationdate><title>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</title><author>Lopez, Onel L. A. ; Brante, Glauber ; Souza, Richard Demo ; Juntti, Markku ; Latva-Aho, Matti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel estimation</topic><topic>compressed sensing</topic><topic>Data processing</topic><topic>Fading</topic><topic>Feature extraction</topic><topic>grant-free random access</topic><topic>Inference algorithms</topic><topic>Internet of Things</topic><topic>Massive IoT</topic><topic>Matching pursuit algorithms</topic><topic>Mathematical analysis</topic><topic>Mud</topic><topic>multi-user detection</topic><topic>Multiuser detection</topic><topic>Networks</topic><topic>Random access</topic><topic>Random variables</topic><topic>signal sparsity level</topic><topic>Sparsity</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Onel L. A.</creatorcontrib><creatorcontrib>Brante, Glauber</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Juntti, Markku</creatorcontrib><creatorcontrib>Latva-Aho, Matti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, Onel L. A.</au><au>Brante, Glauber</au><au>Souza, Richard Demo</au><au>Juntti, Markku</au><au>Latva-Aho, Matti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>72</volume><issue>3</issue><spage>1612</spage><epage>1624</epage><pages>1612-1624</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract><![CDATA[Grant-free protocols exploiting compressed sensing multi-user detection (MUD) are appealing for solving the random access problem in massive Internet of Things (IoT) networks with sporadic device activity. Such protocols would greatly benefit from prior deterministic knowledge of the sparsity level, i.e., the instantaneous number of simultaneously active devices <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Aiming at this, herein we introduce a framework relying on coordinated pilot transmissions (CPTs) for detecting <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>. Specifically, the proposed CPT mechanism includes a downlink (DL) phase for channel state information acquisition that resolves fading uncertainty in the uplink (UL) transmission phase using shared UL pilot symbols for channel compensation. We propose a signal sparsity level detector and analytically assess its accuracy when network channels are subject to Rayleigh fading. We show that the variance of the estimator increases with <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>, and its distribution approximates that of the sum of a Student's <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> and Gaussian random variable. The numerical results evince the need for carefully configuring the duration of the DL and UL phases. Indeed, we show that relatively short DL phases are preferable in highly sparse networks given the total CPT duration is fixed. Finally, we discuss and exemplify with some early results the potential of the proposed CPT framework for MUD, and highlight relevant research directions.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3337242</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1838-5183</orcidid><orcidid>https://orcid.org/0000-0002-5413-1896</orcidid><orcidid>https://orcid.org/0000-0002-6261-0969</orcidid><orcidid>https://orcid.org/0000-0001-6006-4274</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2024-03, Vol.72 (3), p.1612-1624
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2023_3337242
source IEEE Electronic Library (IEL) Journals
subjects Channel estimation
compressed sensing
Data processing
Fading
Feature extraction
grant-free random access
Inference algorithms
Internet of Things
Massive IoT
Matching pursuit algorithms
Mathematical analysis
Mud
multi-user detection
Multiuser detection
Networks
Random access
Random variables
signal sparsity level
Sparsity
Symbols
title Coordinated Pilot Transmissions for Detecting the Signal Sparsity Level in Massive IoT Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T17%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20Pilot%20Transmissions%20for%20Detecting%20the%20Signal%20Sparsity%20Level%20in%20Massive%20IoT%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Lopez,%20Onel%20L.%20A.&rft.date=2024-03-01&rft.volume=72&rft.issue=3&rft.spage=1612&rft.epage=1624&rft.pages=1612-1624&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3337242&rft_dat=%3Cproquest_cross%3E2969044333%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-3e71d6d5ab999ca115bd28ba95ea108e8d3562685206fc5e9c05f9511d18bad33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969044333&rft_id=info:pmid/&rft_ieee_id=10329354&rfr_iscdi=true