Loading…

Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials

Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and me...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.192-194
Main Authors: Mcgarry, Michael P., Iyer, Mahadevan K., Lee, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03
cites cdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03
container_end_page 194
container_issue 1
container_start_page 192
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 12
creator Mcgarry, Michael P.
Iyer, Mahadevan K.
Lee, Mark
description Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits.
doi_str_mv 10.1109/TCPMT.2021.3131921
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2021_3131921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9631218</ieee_id><sourcerecordid>2621064517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</originalsourceid><addsrcrecordid>eNo9kE9rAjEQxUNpoWL9Au0l0PPaTLLJbo7t9i8oFWrpMcTsLERWV5O14LdvrOIw8Obw3szwI-QW2BiA6Yd5NZvOx5xxGAsQoDlckAEHqTKhS3l5niW7JqMYlyyVLFnBxIB8PYXO1gu7runUt61fYY8h-7G_SJ89tuj64B2dhW6DofcYadfQid_ufE2rsI-9bemsa_crDHRqU9TbNt6QqyYJjk46JN-vL_PqPZt8vn1Uj5PMcS37jC_Sd9LlpWUIReFSu5zXIATWqpEAThVKFpAXElyeC7TWOq2VbDRqZZkYkvvj3k3otjuMvVl2u7BOJw1XHJjKJRTJxY8uF7oYAzZmE_zKhr0BZg78zD8_c-BnTvxS6O4Y8oh4DmglgEMp_gAs22te</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064517</pqid></control><display><type>article</type><title>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</title><source>IEEE Xplore (Online service)</source><creator>Mcgarry, Michael P. ; Iyer, Mahadevan K. ; Lee, Mark</creator><creatorcontrib>Mcgarry, Michael P. ; Iyer, Mahadevan K. ; Lee, Mark</creatorcontrib><description>Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3131921</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Broadband ; Dielectric properties ; Dielectrics ; Dispersion ; Dissipation factor ; Frequency measurement ; Integrated circuit (IC) packaging ; Integrated circuit modeling ; Integrated circuits ; Liquid crystal polymers ; Liquid crystals ; Mechanical properties ; Microwave circuits ; Microwave frequencies ; millimeter (mm)-wave ; Millimeter waves ; mm-wave ICs (MIMICs) ; Packaging ; Radio frequency ; Semiconductor device measurement</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.192-194</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</citedby><cites>FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</cites><orcidid>0000-0001-6541-8465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9631218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Mcgarry, Michael P.</creatorcontrib><creatorcontrib>Iyer, Mahadevan K.</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><title>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits.</description><subject>Broadband</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Dispersion</subject><subject>Dissipation factor</subject><subject>Frequency measurement</subject><subject>Integrated circuit (IC) packaging</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Liquid crystal polymers</subject><subject>Liquid crystals</subject><subject>Mechanical properties</subject><subject>Microwave circuits</subject><subject>Microwave frequencies</subject><subject>millimeter (mm)-wave</subject><subject>Millimeter waves</subject><subject>mm-wave ICs (MIMICs)</subject><subject>Packaging</subject><subject>Radio frequency</subject><subject>Semiconductor device measurement</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9rAjEQxUNpoWL9Au0l0PPaTLLJbo7t9i8oFWrpMcTsLERWV5O14LdvrOIw8Obw3szwI-QW2BiA6Yd5NZvOx5xxGAsQoDlckAEHqTKhS3l5niW7JqMYlyyVLFnBxIB8PYXO1gu7runUt61fYY8h-7G_SJ89tuj64B2dhW6DofcYadfQid_ufE2rsI-9bemsa_crDHRqU9TbNt6QqyYJjk46JN-vL_PqPZt8vn1Uj5PMcS37jC_Sd9LlpWUIReFSu5zXIATWqpEAThVKFpAXElyeC7TWOq2VbDRqZZkYkvvj3k3otjuMvVl2u7BOJw1XHJjKJRTJxY8uF7oYAzZmE_zKhr0BZg78zD8_c-BnTvxS6O4Y8oh4DmglgEMp_gAs22te</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Mcgarry, Michael P.</creator><creator>Iyer, Mahadevan K.</creator><creator>Lee, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid></search><sort><creationdate>202201</creationdate><title>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</title><author>Mcgarry, Michael P. ; Iyer, Mahadevan K. ; Lee, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Broadband</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Dispersion</topic><topic>Dissipation factor</topic><topic>Frequency measurement</topic><topic>Integrated circuit (IC) packaging</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Liquid crystal polymers</topic><topic>Liquid crystals</topic><topic>Mechanical properties</topic><topic>Microwave circuits</topic><topic>Microwave frequencies</topic><topic>millimeter (mm)-wave</topic><topic>Millimeter waves</topic><topic>mm-wave ICs (MIMICs)</topic><topic>Packaging</topic><topic>Radio frequency</topic><topic>Semiconductor device measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mcgarry, Michael P.</creatorcontrib><creatorcontrib>Iyer, Mahadevan K.</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mcgarry, Michael P.</au><au>Iyer, Mahadevan K.</au><au>Lee, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>192</spage><epage>194</epage><pages>192-194</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3131921</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.192-194
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2021_3131921
source IEEE Xplore (Online service)
subjects Broadband
Dielectric properties
Dielectrics
Dispersion
Dissipation factor
Frequency measurement
Integrated circuit (IC) packaging
Integrated circuit modeling
Integrated circuits
Liquid crystal polymers
Liquid crystals
Mechanical properties
Microwave circuits
Microwave frequencies
millimeter (mm)-wave
Millimeter waves
mm-wave ICs (MIMICs)
Packaging
Radio frequency
Semiconductor device measurement
title Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Millimeter-Wave%20Dielectric%20Properties%20of%20Liquid%20Crystal%20Polymer%20Materials&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Mcgarry,%20Michael%20P.&rft.date=2022-01&rft.volume=12&rft.issue=1&rft.spage=192&rft.epage=194&rft.pages=192-194&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3131921&rft_dat=%3Cproquest_cross%3E2621064517%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621064517&rft_id=info:pmid/&rft_ieee_id=9631218&rfr_iscdi=true