Loading…
Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials
Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and me...
Saved in:
Published in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.192-194 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03 |
container_end_page | 194 |
container_issue | 1 |
container_start_page | 192 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 12 |
creator | Mcgarry, Michael P. Iyer, Mahadevan K. Lee, Mark |
description | Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits. |
doi_str_mv | 10.1109/TCPMT.2021.3131921 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2021_3131921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9631218</ieee_id><sourcerecordid>2621064517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</originalsourceid><addsrcrecordid>eNo9kE9rAjEQxUNpoWL9Au0l0PPaTLLJbo7t9i8oFWrpMcTsLERWV5O14LdvrOIw8Obw3szwI-QW2BiA6Yd5NZvOx5xxGAsQoDlckAEHqTKhS3l5niW7JqMYlyyVLFnBxIB8PYXO1gu7runUt61fYY8h-7G_SJ89tuj64B2dhW6DofcYadfQid_ufE2rsI-9bemsa_crDHRqU9TbNt6QqyYJjk46JN-vL_PqPZt8vn1Uj5PMcS37jC_Sd9LlpWUIReFSu5zXIATWqpEAThVKFpAXElyeC7TWOq2VbDRqZZkYkvvj3k3otjuMvVl2u7BOJw1XHJjKJRTJxY8uF7oYAzZmE_zKhr0BZg78zD8_c-BnTvxS6O4Y8oh4DmglgEMp_gAs22te</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064517</pqid></control><display><type>article</type><title>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</title><source>IEEE Xplore (Online service)</source><creator>Mcgarry, Michael P. ; Iyer, Mahadevan K. ; Lee, Mark</creator><creatorcontrib>Mcgarry, Michael P. ; Iyer, Mahadevan K. ; Lee, Mark</creatorcontrib><description>Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3131921</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Broadband ; Dielectric properties ; Dielectrics ; Dispersion ; Dissipation factor ; Frequency measurement ; Integrated circuit (IC) packaging ; Integrated circuit modeling ; Integrated circuits ; Liquid crystal polymers ; Liquid crystals ; Mechanical properties ; Microwave circuits ; Microwave frequencies ; millimeter (mm)-wave ; Millimeter waves ; mm-wave ICs (MIMICs) ; Packaging ; Radio frequency ; Semiconductor device measurement</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.192-194</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</citedby><cites>FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</cites><orcidid>0000-0001-6541-8465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9631218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids></links><search><creatorcontrib>Mcgarry, Michael P.</creatorcontrib><creatorcontrib>Iyer, Mahadevan K.</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><title>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits.</description><subject>Broadband</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Dispersion</subject><subject>Dissipation factor</subject><subject>Frequency measurement</subject><subject>Integrated circuit (IC) packaging</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Liquid crystal polymers</subject><subject>Liquid crystals</subject><subject>Mechanical properties</subject><subject>Microwave circuits</subject><subject>Microwave frequencies</subject><subject>millimeter (mm)-wave</subject><subject>Millimeter waves</subject><subject>mm-wave ICs (MIMICs)</subject><subject>Packaging</subject><subject>Radio frequency</subject><subject>Semiconductor device measurement</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9rAjEQxUNpoWL9Au0l0PPaTLLJbo7t9i8oFWrpMcTsLERWV5O14LdvrOIw8Obw3szwI-QW2BiA6Yd5NZvOx5xxGAsQoDlckAEHqTKhS3l5niW7JqMYlyyVLFnBxIB8PYXO1gu7runUt61fYY8h-7G_SJ89tuj64B2dhW6DofcYadfQid_ufE2rsI-9bemsa_crDHRqU9TbNt6QqyYJjk46JN-vL_PqPZt8vn1Uj5PMcS37jC_Sd9LlpWUIReFSu5zXIATWqpEAThVKFpAXElyeC7TWOq2VbDRqZZkYkvvj3k3otjuMvVl2u7BOJw1XHJjKJRTJxY8uF7oYAzZmE_zKhr0BZg78zD8_c-BnTvxS6O4Y8oh4DmglgEMp_gAs22te</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Mcgarry, Michael P.</creator><creator>Iyer, Mahadevan K.</creator><creator>Lee, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid></search><sort><creationdate>202201</creationdate><title>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</title><author>Mcgarry, Michael P. ; Iyer, Mahadevan K. ; Lee, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Broadband</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Dispersion</topic><topic>Dissipation factor</topic><topic>Frequency measurement</topic><topic>Integrated circuit (IC) packaging</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Liquid crystal polymers</topic><topic>Liquid crystals</topic><topic>Mechanical properties</topic><topic>Microwave circuits</topic><topic>Microwave frequencies</topic><topic>millimeter (mm)-wave</topic><topic>Millimeter waves</topic><topic>mm-wave ICs (MIMICs)</topic><topic>Packaging</topic><topic>Radio frequency</topic><topic>Semiconductor device measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mcgarry, Michael P.</creatorcontrib><creatorcontrib>Iyer, Mahadevan K.</creatorcontrib><creatorcontrib>Lee, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mcgarry, Michael P.</au><au>Iyer, Mahadevan K.</au><au>Lee, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>192</spage><epage>194</epage><pages>192-194</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Liquid crystal polymers (LCPs) are a class of thermoplastic polymers widely used for packaging radio frequency (RF), microwave, and low millimeter (mm)-wave integrated circuits operating at frequencies as high as 77 GHz. Because of their relatively low cost and attractive electrical, thermal, and mechanical properties, LCPs are of potential interest as a packaging material for advanced circuits operating at high mm-wave frequencies, ~100-300 GHz. To potentially use LCPs at these frequencies will require a quantitative knowledge of the materials' dielectric properties across a broad frequency band. Here, we present nondestructive measurements of the dielectric constant, Dk , and dissipation factor, Df , on six commercially made LCP materials now used for packaging RF/microwave circuits. Measurements using phase-sensitive transmission from 140 to 220 GHz show values of Dk ranging between 2.0 and 4.5, with four materials essentially nondispersive but two showing significant dispersion in this band. Df values were in the range 0.01-0.06, substantially higher than that has been reported for many LCP materials at RF/microwave frequencies. The results are useful to model accurately the performance of packaged mm-wave circuits.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3131921</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-6541-8465</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.192-194 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2021_3131921 |
source | IEEE Xplore (Online service) |
subjects | Broadband Dielectric properties Dielectrics Dispersion Dissipation factor Frequency measurement Integrated circuit (IC) packaging Integrated circuit modeling Integrated circuits Liquid crystal polymers Liquid crystals Mechanical properties Microwave circuits Microwave frequencies millimeter (mm)-wave Millimeter waves mm-wave ICs (MIMICs) Packaging Radio frequency Semiconductor device measurement |
title | Broadband Millimeter-Wave Dielectric Properties of Liquid Crystal Polymer Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Millimeter-Wave%20Dielectric%20Properties%20of%20Liquid%20Crystal%20Polymer%20Materials&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Mcgarry,%20Michael%20P.&rft.date=2022-01&rft.volume=12&rft.issue=1&rft.spage=192&rft.epage=194&rft.pages=192-194&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3131921&rft_dat=%3Cproquest_cross%3E2621064517%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-2b9855c48a0e177c77cc42d133ed6f511c6765714751c443eaaac9965f9e96a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621064517&rft_id=info:pmid/&rft_ieee_id=9631218&rfr_iscdi=true |