Loading…
Time-Controlled and FinFET Compatible Sub-Bandgap References Using Bulk-Diodes
This brief presents an innovative technique for precise reference generation based on "digital-alike" operation. The bias of pn-junctions is defined trough pulse timings, while respective PTAT and CTAT signals are sampled from the voltage-decay of a capacitor. The greatly simple structures...
Saved in:
Published in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-10, Vol.66 (10), p.1608-1612 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-e4db0a9b2c719a76902c959ae84cb9c6c41e35b7f2e19c1a987cd71a98d5efc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-e4db0a9b2c719a76902c959ae84cb9c6c41e35b7f2e19c1a987cd71a98d5efc73 |
container_end_page | 1612 |
container_issue | 10 |
container_start_page | 1608 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 66 |
creator | Eberlein, M. Pretl, H. Georgiev, Z. |
description | This brief presents an innovative technique for precise reference generation based on "digital-alike" operation. The bias of pn-junctions is defined trough pulse timings, while respective PTAT and CTAT signals are sampled from the voltage-decay of a capacitor. The greatly simple structures offer intrinsic supply robustness and use charge sharing or addition, to achieve large reverse-bandgap levels. Here, we employ the bulk-to-substrate diode of any baseline process combined with charge-pump function, instead of BJT devices. Two different circuit ideas were designed in 16-nm FinFET, with ultra-low power requirements. The first version achieves an untrimmed 3σ-accuracy of ±0.82%, realizing 235-mV reference output down to 0.85-V supply. A second IP carries lowest complexity using a single diode only: it consumes 21 nA at 1680 μm 2 active area, and provides larger levels of Vref ~370 mV at merely ±2.7 mV total spread from silicon data. Unlike prior art, the compact reverse bandgaps do not require typical analog structures, like resistors, matched biasing, or differential amplifiers. |
doi_str_mv | 10.1109/TCSII.2019.2929599 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2019_2929599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8765828</ieee_id><sourcerecordid>2298706233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e4db0a9b2c719a76902c959ae84cb9c6c41e35b7f2e19c1a987cd71a98d5efc73</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxNnFdn6cPdLQQqUKJNqeLcfZVClpEuzkwNvj0IrTrrQzs6OPkHvOZpwzeNpmm9VqJhiHmQABMcAFmfA4TmkogV-OewRUykhekxvnDowJYKGYkPdtdUSatU1v27rGItBNESyrZrnYBll77HRf5TUGmyGnc3_a6y74xBItNgZdsHNVsw_mQ_1FX6q2QHdLrkpdO7w7zynZ-aTsja4_XlfZ85oaX66nGBU505ALIzlomQATxpfWmEYmB5OYiGMY57IUyMFwDak0hRxnEWNpZDglj6fczrbfA7peHdrBNv6lEsKrWSLC0KvESWVs65zFUnW2Omr7ozhTIzf1x02N3NSZmzc9nEwVIv4bUpnEqUjDX2h_aRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298706233</pqid></control><display><type>article</type><title>Time-Controlled and FinFET Compatible Sub-Bandgap References Using Bulk-Diodes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Eberlein, M. ; Pretl, H. ; Georgiev, Z.</creator><creatorcontrib>Eberlein, M. ; Pretl, H. ; Georgiev, Z.</creatorcontrib><description>This brief presents an innovative technique for precise reference generation based on "digital-alike" operation. The bias of pn-junctions is defined trough pulse timings, while respective PTAT and CTAT signals are sampled from the voltage-decay of a capacitor. The greatly simple structures offer intrinsic supply robustness and use charge sharing or addition, to achieve large reverse-bandgap levels. Here, we employ the bulk-to-substrate diode of any baseline process combined with charge-pump function, instead of BJT devices. Two different circuit ideas were designed in 16-nm FinFET, with ultra-low power requirements. The first version achieves an untrimmed 3σ-accuracy of ±0.82%, realizing 235-mV reference output down to 0.85-V supply. A second IP carries lowest complexity using a single diode only: it consumes 21 nA at 1680 μm 2 active area, and provides larger levels of Vref ~370 mV at merely ±2.7 mV total spread from silicon data. Unlike prior art, the compact reverse bandgaps do not require typical analog structures, like resistors, matched biasing, or differential amplifiers.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2019.2929599</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>bulk-diode ; Capacitors ; Charge pumps ; Circuit design ; Differential amplifiers ; Diodes ; Energy gap ; FinFET process ; FinFETs ; Junctions ; Nwell junction ; Photonic band gap ; Resistors ; reverse bandgap ; Substrates ; Switched-capacitor ; Switches ; Timing ; voltage reference</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2019-10, Vol.66 (10), p.1608-1612</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e4db0a9b2c719a76902c959ae84cb9c6c41e35b7f2e19c1a987cd71a98d5efc73</citedby><cites>FETCH-LOGICAL-c295t-e4db0a9b2c719a76902c959ae84cb9c6c41e35b7f2e19c1a987cd71a98d5efc73</cites><orcidid>0000-0002-6188-8029 ; 0000-0003-1519-076X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8765828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Eberlein, M.</creatorcontrib><creatorcontrib>Pretl, H.</creatorcontrib><creatorcontrib>Georgiev, Z.</creatorcontrib><title>Time-Controlled and FinFET Compatible Sub-Bandgap References Using Bulk-Diodes</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>This brief presents an innovative technique for precise reference generation based on "digital-alike" operation. The bias of pn-junctions is defined trough pulse timings, while respective PTAT and CTAT signals are sampled from the voltage-decay of a capacitor. The greatly simple structures offer intrinsic supply robustness and use charge sharing or addition, to achieve large reverse-bandgap levels. Here, we employ the bulk-to-substrate diode of any baseline process combined with charge-pump function, instead of BJT devices. Two different circuit ideas were designed in 16-nm FinFET, with ultra-low power requirements. The first version achieves an untrimmed 3σ-accuracy of ±0.82%, realizing 235-mV reference output down to 0.85-V supply. A second IP carries lowest complexity using a single diode only: it consumes 21 nA at 1680 μm 2 active area, and provides larger levels of Vref ~370 mV at merely ±2.7 mV total spread from silicon data. Unlike prior art, the compact reverse bandgaps do not require typical analog structures, like resistors, matched biasing, or differential amplifiers.</description><subject>bulk-diode</subject><subject>Capacitors</subject><subject>Charge pumps</subject><subject>Circuit design</subject><subject>Differential amplifiers</subject><subject>Diodes</subject><subject>Energy gap</subject><subject>FinFET process</subject><subject>FinFETs</subject><subject>Junctions</subject><subject>Nwell junction</subject><subject>Photonic band gap</subject><subject>Resistors</subject><subject>reverse bandgap</subject><subject>Substrates</subject><subject>Switched-capacitor</subject><subject>Switches</subject><subject>Timing</subject><subject>voltage reference</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxNnFdn6cPdLQQqUKJNqeLcfZVClpEuzkwNvj0IrTrrQzs6OPkHvOZpwzeNpmm9VqJhiHmQABMcAFmfA4TmkogV-OewRUykhekxvnDowJYKGYkPdtdUSatU1v27rGItBNESyrZrnYBll77HRf5TUGmyGnc3_a6y74xBItNgZdsHNVsw_mQ_1FX6q2QHdLrkpdO7w7zynZ-aTsja4_XlfZ85oaX66nGBU505ALIzlomQATxpfWmEYmB5OYiGMY57IUyMFwDak0hRxnEWNpZDglj6fczrbfA7peHdrBNv6lEsKrWSLC0KvESWVs65zFUnW2Omr7ozhTIzf1x02N3NSZmzc9nEwVIv4bUpnEqUjDX2h_aRQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Eberlein, M.</creator><creator>Pretl, H.</creator><creator>Georgiev, Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6188-8029</orcidid><orcidid>https://orcid.org/0000-0003-1519-076X</orcidid></search><sort><creationdate>20191001</creationdate><title>Time-Controlled and FinFET Compatible Sub-Bandgap References Using Bulk-Diodes</title><author>Eberlein, M. ; Pretl, H. ; Georgiev, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e4db0a9b2c719a76902c959ae84cb9c6c41e35b7f2e19c1a987cd71a98d5efc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bulk-diode</topic><topic>Capacitors</topic><topic>Charge pumps</topic><topic>Circuit design</topic><topic>Differential amplifiers</topic><topic>Diodes</topic><topic>Energy gap</topic><topic>FinFET process</topic><topic>FinFETs</topic><topic>Junctions</topic><topic>Nwell junction</topic><topic>Photonic band gap</topic><topic>Resistors</topic><topic>reverse bandgap</topic><topic>Substrates</topic><topic>Switched-capacitor</topic><topic>Switches</topic><topic>Timing</topic><topic>voltage reference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberlein, M.</creatorcontrib><creatorcontrib>Pretl, H.</creatorcontrib><creatorcontrib>Georgiev, Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberlein, M.</au><au>Pretl, H.</au><au>Georgiev, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Controlled and FinFET Compatible Sub-Bandgap References Using Bulk-Diodes</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>66</volume><issue>10</issue><spage>1608</spage><epage>1612</epage><pages>1608-1612</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief presents an innovative technique for precise reference generation based on "digital-alike" operation. The bias of pn-junctions is defined trough pulse timings, while respective PTAT and CTAT signals are sampled from the voltage-decay of a capacitor. The greatly simple structures offer intrinsic supply robustness and use charge sharing or addition, to achieve large reverse-bandgap levels. Here, we employ the bulk-to-substrate diode of any baseline process combined with charge-pump function, instead of BJT devices. Two different circuit ideas were designed in 16-nm FinFET, with ultra-low power requirements. The first version achieves an untrimmed 3σ-accuracy of ±0.82%, realizing 235-mV reference output down to 0.85-V supply. A second IP carries lowest complexity using a single diode only: it consumes 21 nA at 1680 μm 2 active area, and provides larger levels of Vref ~370 mV at merely ±2.7 mV total spread from silicon data. Unlike prior art, the compact reverse bandgaps do not require typical analog structures, like resistors, matched biasing, or differential amplifiers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2019.2929599</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6188-8029</orcidid><orcidid>https://orcid.org/0000-0003-1519-076X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2019-10, Vol.66 (10), p.1608-1612 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSII_2019_2929599 |
source | IEEE Electronic Library (IEL) Journals |
subjects | bulk-diode Capacitors Charge pumps Circuit design Differential amplifiers Diodes Energy gap FinFET process FinFETs Junctions Nwell junction Photonic band gap Resistors reverse bandgap Substrates Switched-capacitor Switches Timing voltage reference |
title | Time-Controlled and FinFET Compatible Sub-Bandgap References Using Bulk-Diodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Controlled%20and%20FinFET%20Compatible%20Sub-Bandgap%20References%20Using%20Bulk-Diodes&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Eberlein,%20M.&rft.date=2019-10-01&rft.volume=66&rft.issue=10&rft.spage=1608&rft.epage=1612&rft.pages=1608-1612&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2019.2929599&rft_dat=%3Cproquest_cross%3E2298706233%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-e4db0a9b2c719a76902c959ae84cb9c6c41e35b7f2e19c1a987cd71a98d5efc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2298706233&rft_id=info:pmid/&rft_ieee_id=8765828&rfr_iscdi=true |