Loading…

A New NN-Based Approach to In-Sensor PDM-to-PCM Conversion for Ultra TinyML KWS

This brief proposes a new approach based on a tiny neural network to convert Pulse Density Modulation (PDM) signals acquired from digital Micro-Electro-Mechanical System (MEMS) microphones into the standard Pulse Code Modulation (PCM) format for any further digital audio processing. The proposed app...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-04, Vol.70 (4), p.1595-1599
Main Authors: Vitolo, Paola, Liguori, Rosalba, Di Benedetto, Luigi, Rubino, Alfredo, Pau, Danilo, Licciardo, Gian Domenico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-5ee872dee970c415bf51f931920fd53799c12cceab8be5536ab0de8207152e23
cites cdi_FETCH-LOGICAL-c339t-5ee872dee970c415bf51f931920fd53799c12cceab8be5536ab0de8207152e23
container_end_page 1599
container_issue 4
container_start_page 1595
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Vitolo, Paola
Liguori, Rosalba
Di Benedetto, Luigi
Rubino, Alfredo
Pau, Danilo
Licciardo, Gian Domenico
description This brief proposes a new approach based on a tiny neural network to convert Pulse Density Modulation (PDM) signals acquired from digital Micro-Electro-Mechanical System (MEMS) microphones into the standard Pulse Code Modulation (PCM) format for any further digital audio processing. The proposed approach allows for a compact and ultra-low-power hardware implementation of the conversion, suitable for ultra tinyML Key Word Spotting (KWS) applications, closely coupled with the sensor itself and tightly coupled with a neural network classifier. The converter achieves a signal-to-noise ratio value of 48 dB, which enables KWS accuracy of 89% over 12 classes. Implementation on a Xilinx Artix-7 FPGA results in 917 LUTs, 361 FFs, and 182 \mu \text{W} Dynamic Power (DynP) consumption. By targeting the TSMC 0.13 \mu \text{m} CMOS technology, the synthesis reports an area occupation of 0.086 mm2 and a DynP of 128.7 \mu \text{W} /MHz. These results enable the integration of the proposed design into the CMOS circuitry closely coupled with the MEMS microphone.
doi_str_mv 10.1109/TCSII.2022.3224022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2022_3224022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9960783</ieee_id><sourcerecordid>2792134638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5ee872dee970c415bf51f931920fd53799c12cceab8be5536ab0de8207152e23</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-BiibOLvY7r-FjCq6IvqUEcrTw2IlWJi52C-u9JacVpVtqZ3dFHyLXgAyG4uUuT5Xg8AA4wkABRpyekJ5SKmdRGnO7nyDCtI31OLkJYcQ6GS-iR-YjO8IfOZuw-C1jS0WbjXVZ80NbRccOW2ATn6eJhylrHFsmUJq75Rh9q19Cq27ytW5_RtG520wl9fV9ekrMqWwe8OmqfpE-PafLCJvPncTKasEJK0zKFGGsoEY3mRSRUXilRGSkM8KpUXWdTCCgKzPI4R6XkMMt5iTFwLRQgyD65PZzt2n5tMbR25ba-6T5a0AaEjIYy7lxwcBXeheCxshtff2Z-ZwW3e272j5vdc7NHbl3o5hCqEfE_YMyQ61jKXwZxZnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792134638</pqid></control><display><type>article</type><title>A New NN-Based Approach to In-Sensor PDM-to-PCM Conversion for Ultra TinyML KWS</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Vitolo, Paola ; Liguori, Rosalba ; Di Benedetto, Luigi ; Rubino, Alfredo ; Pau, Danilo ; Licciardo, Gian Domenico</creator><creatorcontrib>Vitolo, Paola ; Liguori, Rosalba ; Di Benedetto, Luigi ; Rubino, Alfredo ; Pau, Danilo ; Licciardo, Gian Domenico</creatorcontrib><description><![CDATA[This brief proposes a new approach based on a tiny neural network to convert Pulse Density Modulation (PDM) signals acquired from digital Micro-Electro-Mechanical System (MEMS) microphones into the standard Pulse Code Modulation (PCM) format for any further digital audio processing. The proposed approach allows for a compact and ultra-low-power hardware implementation of the conversion, suitable for ultra tinyML Key Word Spotting (KWS) applications, closely coupled with the sensor itself and tightly coupled with a neural network classifier. The converter achieves a signal-to-noise ratio value of 48 dB, which enables KWS accuracy of 89% over 12 classes. Implementation on a Xilinx Artix-7 FPGA results in 917 LUTs, 361 FFs, and 182 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> Dynamic Power (DynP) consumption. By targeting the TSMC 0.13 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology, the synthesis reports an area occupation of 0.086 mm2 and a DynP of 128.7 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>/MHz. These results enable the integration of the proposed design into the CMOS circuitry closely coupled with the MEMS microphone.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3224022</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; audio processing ; Circuits ; CMOS ; Conversion ; custom digital design ; edge computing ; Finite impulse response filters ; in-sensor computing ; Microelectromechanical systems ; Micromechanical devices ; Microphones ; Neural network ; Neural networks ; Power consumption ; Pulse code modulation ; Pulse duration modulation ; Pulse modulation ; Signal to noise ratio ; Training ; ultra-low-power</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-04, Vol.70 (4), p.1595-1599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5ee872dee970c415bf51f931920fd53799c12cceab8be5536ab0de8207152e23</citedby><cites>FETCH-LOGICAL-c339t-5ee872dee970c415bf51f931920fd53799c12cceab8be5536ab0de8207152e23</cites><orcidid>0000-0001-5588-0621 ; 0000-0003-1585-2313 ; 0000-0002-5690-9040 ; 0000-0001-6703-3999 ; 0000-0002-1913-4928 ; 0000-0002-0093-1169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9960783$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vitolo, Paola</creatorcontrib><creatorcontrib>Liguori, Rosalba</creatorcontrib><creatorcontrib>Di Benedetto, Luigi</creatorcontrib><creatorcontrib>Rubino, Alfredo</creatorcontrib><creatorcontrib>Pau, Danilo</creatorcontrib><creatorcontrib>Licciardo, Gian Domenico</creatorcontrib><title>A New NN-Based Approach to In-Sensor PDM-to-PCM Conversion for Ultra TinyML KWS</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[This brief proposes a new approach based on a tiny neural network to convert Pulse Density Modulation (PDM) signals acquired from digital Micro-Electro-Mechanical System (MEMS) microphones into the standard Pulse Code Modulation (PCM) format for any further digital audio processing. The proposed approach allows for a compact and ultra-low-power hardware implementation of the conversion, suitable for ultra tinyML Key Word Spotting (KWS) applications, closely coupled with the sensor itself and tightly coupled with a neural network classifier. The converter achieves a signal-to-noise ratio value of 48 dB, which enables KWS accuracy of 89% over 12 classes. Implementation on a Xilinx Artix-7 FPGA results in 917 LUTs, 361 FFs, and 182 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> Dynamic Power (DynP) consumption. By targeting the TSMC 0.13 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology, the synthesis reports an area occupation of 0.086 mm2 and a DynP of 128.7 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>/MHz. These results enable the integration of the proposed design into the CMOS circuitry closely coupled with the MEMS microphone.]]></description><subject>Artificial neural networks</subject><subject>audio processing</subject><subject>Circuits</subject><subject>CMOS</subject><subject>Conversion</subject><subject>custom digital design</subject><subject>edge computing</subject><subject>Finite impulse response filters</subject><subject>in-sensor computing</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Microphones</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Power consumption</subject><subject>Pulse code modulation</subject><subject>Pulse duration modulation</subject><subject>Pulse modulation</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>ultra-low-power</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-BiibOLvY7r-FjCq6IvqUEcrTw2IlWJi52C-u9JacVpVtqZ3dFHyLXgAyG4uUuT5Xg8AA4wkABRpyekJ5SKmdRGnO7nyDCtI31OLkJYcQ6GS-iR-YjO8IfOZuw-C1jS0WbjXVZ80NbRccOW2ATn6eJhylrHFsmUJq75Rh9q19Cq27ytW5_RtG520wl9fV9ekrMqWwe8OmqfpE-PafLCJvPncTKasEJK0zKFGGsoEY3mRSRUXilRGSkM8KpUXWdTCCgKzPI4R6XkMMt5iTFwLRQgyD65PZzt2n5tMbR25ba-6T5a0AaEjIYy7lxwcBXeheCxshtff2Z-ZwW3e272j5vdc7NHbl3o5hCqEfE_YMyQ61jKXwZxZnk</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Vitolo, Paola</creator><creator>Liguori, Rosalba</creator><creator>Di Benedetto, Luigi</creator><creator>Rubino, Alfredo</creator><creator>Pau, Danilo</creator><creator>Licciardo, Gian Domenico</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5588-0621</orcidid><orcidid>https://orcid.org/0000-0003-1585-2313</orcidid><orcidid>https://orcid.org/0000-0002-5690-9040</orcidid><orcidid>https://orcid.org/0000-0001-6703-3999</orcidid><orcidid>https://orcid.org/0000-0002-1913-4928</orcidid><orcidid>https://orcid.org/0000-0002-0093-1169</orcidid></search><sort><creationdate>20230401</creationdate><title>A New NN-Based Approach to In-Sensor PDM-to-PCM Conversion for Ultra TinyML KWS</title><author>Vitolo, Paola ; Liguori, Rosalba ; Di Benedetto, Luigi ; Rubino, Alfredo ; Pau, Danilo ; Licciardo, Gian Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5ee872dee970c415bf51f931920fd53799c12cceab8be5536ab0de8207152e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>audio processing</topic><topic>Circuits</topic><topic>CMOS</topic><topic>Conversion</topic><topic>custom digital design</topic><topic>edge computing</topic><topic>Finite impulse response filters</topic><topic>in-sensor computing</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Microphones</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Power consumption</topic><topic>Pulse code modulation</topic><topic>Pulse duration modulation</topic><topic>Pulse modulation</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>ultra-low-power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitolo, Paola</creatorcontrib><creatorcontrib>Liguori, Rosalba</creatorcontrib><creatorcontrib>Di Benedetto, Luigi</creatorcontrib><creatorcontrib>Rubino, Alfredo</creatorcontrib><creatorcontrib>Pau, Danilo</creatorcontrib><creatorcontrib>Licciardo, Gian Domenico</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitolo, Paola</au><au>Liguori, Rosalba</au><au>Di Benedetto, Luigi</au><au>Rubino, Alfredo</au><au>Pau, Danilo</au><au>Licciardo, Gian Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New NN-Based Approach to In-Sensor PDM-to-PCM Conversion for Ultra TinyML KWS</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>70</volume><issue>4</issue><spage>1595</spage><epage>1599</epage><pages>1595-1599</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract><![CDATA[This brief proposes a new approach based on a tiny neural network to convert Pulse Density Modulation (PDM) signals acquired from digital Micro-Electro-Mechanical System (MEMS) microphones into the standard Pulse Code Modulation (PCM) format for any further digital audio processing. The proposed approach allows for a compact and ultra-low-power hardware implementation of the conversion, suitable for ultra tinyML Key Word Spotting (KWS) applications, closely coupled with the sensor itself and tightly coupled with a neural network classifier. The converter achieves a signal-to-noise ratio value of 48 dB, which enables KWS accuracy of 89% over 12 classes. Implementation on a Xilinx Artix-7 FPGA results in 917 LUTs, 361 FFs, and 182 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> Dynamic Power (DynP) consumption. By targeting the TSMC 0.13 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> CMOS technology, the synthesis reports an area occupation of 0.086 mm2 and a DynP of 128.7 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>/MHz. These results enable the integration of the proposed design into the CMOS circuitry closely coupled with the MEMS microphone.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3224022</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5588-0621</orcidid><orcidid>https://orcid.org/0000-0003-1585-2313</orcidid><orcidid>https://orcid.org/0000-0002-5690-9040</orcidid><orcidid>https://orcid.org/0000-0001-6703-3999</orcidid><orcidid>https://orcid.org/0000-0002-1913-4928</orcidid><orcidid>https://orcid.org/0000-0002-0093-1169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-04, Vol.70 (4), p.1595-1599
issn 1549-7747
1558-3791
language eng
recordid cdi_crossref_primary_10_1109_TCSII_2022_3224022
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
audio processing
Circuits
CMOS
Conversion
custom digital design
edge computing
Finite impulse response filters
in-sensor computing
Microelectromechanical systems
Micromechanical devices
Microphones
Neural network
Neural networks
Power consumption
Pulse code modulation
Pulse duration modulation
Pulse modulation
Signal to noise ratio
Training
ultra-low-power
title A New NN-Based Approach to In-Sensor PDM-to-PCM Conversion for Ultra TinyML KWS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20NN-Based%20Approach%20to%20In-Sensor%20PDM-to-PCM%20Conversion%20for%20Ultra%20TinyML%20KWS&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Vitolo,%20Paola&rft.date=2023-04-01&rft.volume=70&rft.issue=4&rft.spage=1595&rft.epage=1599&rft.pages=1595-1599&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3224022&rft_dat=%3Cproquest_cross%3E2792134638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-5ee872dee970c415bf51f931920fd53799c12cceab8be5536ab0de8207152e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792134638&rft_id=info:pmid/&rft_ieee_id=9960783&rfr_iscdi=true