Loading…
Accelerometer Calibration and Dynamic Bias and Gravity Estimation: Analysis, Design, and Experimental Evaluation
Tri-axial linear accelerometers are key components in a great variety of applications and, in particular, in navigation systems. Nonidealities such as scale factors, cross coupling, bias, and other higher-order nonlinearities affect the output of this sensor, leading, in general, to prohibitive erro...
Saved in:
Published in: | IEEE transactions on control systems technology 2011-09, Vol.19 (5), p.1128-1137 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tri-axial linear accelerometers are key components in a great variety of applications and, in particular, in navigation systems. Nonidealities such as scale factors, cross coupling, bias, and other higher-order nonlinearities affect the output of this sensor, leading, in general, to prohibitive errors. On the other hand, these coefficients are often slowly time-varying, which renders offline calibration less effective. One such coefficient that usually varies greatly over time and between power-ons is the bias. This paper details the calibration of an accelerometer unit and presents also a dynamic filtering solution for the bias, which also includes the estimation of the gravity in body-fixed coordinates. Simulation and experimental results obtained with a motion rate table are presented and discussed to illustrate the performance of the proposed algorithms. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2010.2076321 |