Loading…
State and Parameter Estimation for Natural Gas Pipeline Networks Using Transient State Data
We formulate two estimation problems for pipeline systems in which measurements of the compressible gas flowing through a network of pipes are affected by time-varying injections, withdrawals, and compression. We consider a state estimation problem that is then extended to a joint state and paramete...
Saved in:
Published in: | IEEE transactions on control systems technology 2019-09, Vol.27 (5), p.2110-2124 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We formulate two estimation problems for pipeline systems in which measurements of the compressible gas flowing through a network of pipes are affected by time-varying injections, withdrawals, and compression. We consider a state estimation problem that is then extended to a joint state and parameter estimation problem that can be used for data assimilation. In both formulations, the flow dynamics are described on each pipe by space- and time-dependent densities and mass flux which evolve according to a system of coupled partial differential equations, in which momentum dissipation is modeled using the Darcy-Wiesbach friction approximation. These dynamics are first spatially discretized to obtain a system of nonlinear ordinary differential equations on which state and parameter estimation formulations are given as nonlinear least squares problems. A rapid, scalable computational method for performing a nonlinear least squares estimation is developed. Extensive simulations and computational experiments on multiple pipeline test networks demonstrate the effectiveness of the formulations in obtaining state and parameter estimates in the presence of measurement and process noise. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2018.2851507 |