Loading…

Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles

In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive traje...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2021-03, Vol.29 (2), p.794-803
Main Authors: Wang, Ning, Su, Shun-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203
cites cdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203
container_end_page 803
container_issue 2
container_start_page 794
container_title IEEE transactions on control systems technology
container_volume 29
creator Wang, Ning
Su, Shun-Feng
description In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy.
doi_str_mv 10.1109/TCST.2019.2955657
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2019_2955657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8933358</ieee_id><sourcerecordid>2488744941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</originalsourceid><addsrcrecordid>eNo9kE9PwjAYxhejiYh-AOOliedhu67desRFlISEA8Nr05W3WmAbtgXCt3cT4ul9Ds-fvL8oeiR4RAgWL2WxKEcJJmKUCMY4y66iAWEsj3HO2XWnMacxZ5TfRnferzEmKUuyQXSc2MYGiEtbA1o2m6Y9NmheeXAHcPGr8rBC0yaAUzrYA6DSqTXo0LpTL_XGNl-oaJvg2i1qDRr7U11DcFZ3Zau_1F6FrmOxd0ZpQJ_wbfUW_H10Y9TWw8PlDqPl5K0sPuLZ_H1ajGexTgQNsWKigkwQXlWke4TpTIEBhWmlOaGUZEyvVGaMEcRoSjTPk5RqUIIJAJNgOoyez7071_7swQe5bveu6SZlkuZ5lqYiJZ2LnF3atd47MHLnbK3cSRIse76y5yt7vvLCt8s8nTMWAP79uaCUspz-AorreXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488744941</pqid></control><display><type>article</type><title>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Ning ; Su, Shun-Feng</creator><creatorcontrib>Wang, Ning ; Su, Shun-Feng</creatorcontrib><description>In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2955657</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymmetric underactuated surface vehicle (AUSV) ; Asymmetry ; composite coordinate transformation (CCT) ; Coordinate transformations ; Damping ; Feedback control ; finite-time unknown observer (FUO) ; Hydrodynamics ; Interactive control ; interactive trajectory tracking ; Marine vehicles ; Stability analysis ; Surface vehicles ; Surges ; Systems stability ; Tracking control ; Tracking errors ; Trajectory ; Trajectory control ; Trajectory tracking ; Vehicle dynamics ; Yaw</subject><ispartof>IEEE transactions on control systems technology, 2021-03, Vol.29 (2), p.794-803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</citedby><cites>FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</cites><orcidid>0000-0001-9777-128X ; 0000-0003-1745-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8933358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Su, Shun-Feng</creatorcontrib><title>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy.</description><subject>Asymmetric underactuated surface vehicle (AUSV)</subject><subject>Asymmetry</subject><subject>composite coordinate transformation (CCT)</subject><subject>Coordinate transformations</subject><subject>Damping</subject><subject>Feedback control</subject><subject>finite-time unknown observer (FUO)</subject><subject>Hydrodynamics</subject><subject>Interactive control</subject><subject>interactive trajectory tracking</subject><subject>Marine vehicles</subject><subject>Stability analysis</subject><subject>Surface vehicles</subject><subject>Surges</subject><subject>Systems stability</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory tracking</subject><subject>Vehicle dynamics</subject><subject>Yaw</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PwjAYxhejiYh-AOOliedhu67desRFlISEA8Nr05W3WmAbtgXCt3cT4ul9Ds-fvL8oeiR4RAgWL2WxKEcJJmKUCMY4y66iAWEsj3HO2XWnMacxZ5TfRnferzEmKUuyQXSc2MYGiEtbA1o2m6Y9NmheeXAHcPGr8rBC0yaAUzrYA6DSqTXo0LpTL_XGNl-oaJvg2i1qDRr7U11DcFZ3Zau_1F6FrmOxd0ZpQJ_wbfUW_H10Y9TWw8PlDqPl5K0sPuLZ_H1ajGexTgQNsWKigkwQXlWke4TpTIEBhWmlOaGUZEyvVGaMEcRoSjTPk5RqUIIJAJNgOoyez7071_7swQe5bveu6SZlkuZ5lqYiJZ2LnF3atd47MHLnbK3cSRIse76y5yt7vvLCt8s8nTMWAP79uaCUspz-AorreXc</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Wang, Ning</creator><creator>Su, Shun-Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9777-128X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid></search><sort><creationdate>202103</creationdate><title>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</title><author>Wang, Ning ; Su, Shun-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetric underactuated surface vehicle (AUSV)</topic><topic>Asymmetry</topic><topic>composite coordinate transformation (CCT)</topic><topic>Coordinate transformations</topic><topic>Damping</topic><topic>Feedback control</topic><topic>finite-time unknown observer (FUO)</topic><topic>Hydrodynamics</topic><topic>Interactive control</topic><topic>interactive trajectory tracking</topic><topic>Marine vehicles</topic><topic>Stability analysis</topic><topic>Surface vehicles</topic><topic>Surges</topic><topic>Systems stability</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory tracking</topic><topic>Vehicle dynamics</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Su, Shun-Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Su, Shun-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2021-03</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>794</spage><epage>803</epage><pages>794-803</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2955657</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9777-128X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2021-03, Vol.29 (2), p.794-803
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2019_2955657
source IEEE Electronic Library (IEL) Journals
subjects Asymmetric underactuated surface vehicle (AUSV)
Asymmetry
composite coordinate transformation (CCT)
Coordinate transformations
Damping
Feedback control
finite-time unknown observer (FUO)
Hydrodynamics
Interactive control
interactive trajectory tracking
Marine vehicles
Stability analysis
Surface vehicles
Surges
Systems stability
Tracking control
Tracking errors
Trajectory
Trajectory control
Trajectory tracking
Vehicle dynamics
Yaw
title Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Unknown%20Observer-Based%20Interactive%20Trajectory%20Tracking%20Control%20of%20Asymmetric%20Underactuated%20Surface%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Wang,%20Ning&rft.date=2021-03&rft.volume=29&rft.issue=2&rft.spage=794&rft.epage=803&rft.pages=794-803&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2955657&rft_dat=%3Cproquest_cross%3E2488744941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488744941&rft_id=info:pmid/&rft_ieee_id=8933358&rfr_iscdi=true