Loading…
Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles
In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive traje...
Saved in:
Published in: | IEEE transactions on control systems technology 2021-03, Vol.29 (2), p.794-803 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203 |
container_end_page | 803 |
container_issue | 2 |
container_start_page | 794 |
container_title | IEEE transactions on control systems technology |
container_volume | 29 |
creator | Wang, Ning Su, Shun-Feng |
description | In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy. |
doi_str_mv | 10.1109/TCST.2019.2955657 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2019_2955657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8933358</ieee_id><sourcerecordid>2488744941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</originalsourceid><addsrcrecordid>eNo9kE9PwjAYxhejiYh-AOOliedhu67desRFlISEA8Nr05W3WmAbtgXCt3cT4ul9Ds-fvL8oeiR4RAgWL2WxKEcJJmKUCMY4y66iAWEsj3HO2XWnMacxZ5TfRnferzEmKUuyQXSc2MYGiEtbA1o2m6Y9NmheeXAHcPGr8rBC0yaAUzrYA6DSqTXo0LpTL_XGNl-oaJvg2i1qDRr7U11DcFZ3Zau_1F6FrmOxd0ZpQJ_wbfUW_H10Y9TWw8PlDqPl5K0sPuLZ_H1ajGexTgQNsWKigkwQXlWke4TpTIEBhWmlOaGUZEyvVGaMEcRoSjTPk5RqUIIJAJNgOoyez7071_7swQe5bveu6SZlkuZ5lqYiJZ2LnF3atd47MHLnbK3cSRIse76y5yt7vvLCt8s8nTMWAP79uaCUspz-AorreXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488744941</pqid></control><display><type>article</type><title>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Ning ; Su, Shun-Feng</creator><creatorcontrib>Wang, Ning ; Su, Shun-Feng</creatorcontrib><description>In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2955657</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymmetric underactuated surface vehicle (AUSV) ; Asymmetry ; composite coordinate transformation (CCT) ; Coordinate transformations ; Damping ; Feedback control ; finite-time unknown observer (FUO) ; Hydrodynamics ; Interactive control ; interactive trajectory tracking ; Marine vehicles ; Stability analysis ; Surface vehicles ; Surges ; Systems stability ; Tracking control ; Tracking errors ; Trajectory ; Trajectory control ; Trajectory tracking ; Vehicle dynamics ; Yaw</subject><ispartof>IEEE transactions on control systems technology, 2021-03, Vol.29 (2), p.794-803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</citedby><cites>FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</cites><orcidid>0000-0001-9777-128X ; 0000-0003-1745-1425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8933358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Su, Shun-Feng</creatorcontrib><title>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy.</description><subject>Asymmetric underactuated surface vehicle (AUSV)</subject><subject>Asymmetry</subject><subject>composite coordinate transformation (CCT)</subject><subject>Coordinate transformations</subject><subject>Damping</subject><subject>Feedback control</subject><subject>finite-time unknown observer (FUO)</subject><subject>Hydrodynamics</subject><subject>Interactive control</subject><subject>interactive trajectory tracking</subject><subject>Marine vehicles</subject><subject>Stability analysis</subject><subject>Surface vehicles</subject><subject>Surges</subject><subject>Systems stability</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory tracking</subject><subject>Vehicle dynamics</subject><subject>Yaw</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PwjAYxhejiYh-AOOliedhu67desRFlISEA8Nr05W3WmAbtgXCt3cT4ul9Ds-fvL8oeiR4RAgWL2WxKEcJJmKUCMY4y66iAWEsj3HO2XWnMacxZ5TfRnferzEmKUuyQXSc2MYGiEtbA1o2m6Y9NmheeXAHcPGr8rBC0yaAUzrYA6DSqTXo0LpTL_XGNl-oaJvg2i1qDRr7U11DcFZ3Zau_1F6FrmOxd0ZpQJ_wbfUW_H10Y9TWw8PlDqPl5K0sPuLZ_H1ajGexTgQNsWKigkwQXlWke4TpTIEBhWmlOaGUZEyvVGaMEcRoSjTPk5RqUIIJAJNgOoyez7071_7swQe5bveu6SZlkuZ5lqYiJZ2LnF3atd47MHLnbK3cSRIse76y5yt7vvLCt8s8nTMWAP79uaCUspz-AorreXc</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Wang, Ning</creator><creator>Su, Shun-Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9777-128X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid></search><sort><creationdate>202103</creationdate><title>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</title><author>Wang, Ning ; Su, Shun-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetric underactuated surface vehicle (AUSV)</topic><topic>Asymmetry</topic><topic>composite coordinate transformation (CCT)</topic><topic>Coordinate transformations</topic><topic>Damping</topic><topic>Feedback control</topic><topic>finite-time unknown observer (FUO)</topic><topic>Hydrodynamics</topic><topic>Interactive control</topic><topic>interactive trajectory tracking</topic><topic>Marine vehicles</topic><topic>Stability analysis</topic><topic>Surface vehicles</topic><topic>Surges</topic><topic>Systems stability</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory tracking</topic><topic>Vehicle dynamics</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Su, Shun-Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Su, Shun-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2021-03</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>794</spage><epage>803</epage><pages>794-803</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this brief, a finite-time unknown observer-based interactive trajectory tracking control (FUO-ITTC) scheme is created for an asymmetric underactuated surface vehicle (AUSV). In lieu of a selfish trajectory which might be essentially inaccessible for an AUSV, the philosophy of an interactive trajectory, which features freely prescribed surge and yaw dynamics, and sway interactions with cross-tracking dynamics, is innovatively established for the first time, and thereby contributing to a family of uniformly trackable trajectories which completely remove persistent-excitation constraints on the desired yaw rate. By defining a composite coordinate transformation (CCT), interactive trajectory tracking error dynamics are formulated in a cascade structure with finite-time vanishing residuals. By virtue of the CCT-based cascade structure, FUO-based surge and yaw controllers are separately synthesized with an interaction law. The entire FUO-ITTC closed-loop system stability is guaranteed by combining the Lyapunov approach with cascade analysis, which in turn rigorously proves that both kinematic and dynamic tracking errors globally asymptotically converge to zero. Comprehensive experiments and comparisons are conducted on a benchmark AUSV and demonstrate the remarkable performance of the proposed FUO-ITTC scheme in terms of both transient and steady-state tracking accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2955657</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9777-128X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2021-03, Vol.29 (2), p.794-803 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2019_2955657 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Asymmetric underactuated surface vehicle (AUSV) Asymmetry composite coordinate transformation (CCT) Coordinate transformations Damping Feedback control finite-time unknown observer (FUO) Hydrodynamics Interactive control interactive trajectory tracking Marine vehicles Stability analysis Surface vehicles Surges Systems stability Tracking control Tracking errors Trajectory Trajectory control Trajectory tracking Vehicle dynamics Yaw |
title | Finite-Time Unknown Observer-Based Interactive Trajectory Tracking Control of Asymmetric Underactuated Surface Vehicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Unknown%20Observer-Based%20Interactive%20Trajectory%20Tracking%20Control%20of%20Asymmetric%20Underactuated%20Surface%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Wang,%20Ning&rft.date=2021-03&rft.volume=29&rft.issue=2&rft.spage=794&rft.epage=803&rft.pages=794-803&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2955657&rft_dat=%3Cproquest_cross%3E2488744941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-a59be7916bb18655c7aefea03bc6133175cda7fff91fc31c68243cea959eef203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488744941&rft_id=info:pmid/&rft_ieee_id=8933358&rfr_iscdi=true |