Loading…
Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field
In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using...
Saved in:
Published in: | IEEE transactions on control systems technology 2023-07, Vol.31 (4), p.1-16 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2023.3237614 |