Loading…

Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field

In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2023-07, Vol.31 (4), p.1-16
Main Authors: Reed, James, Abney, Andrew, Mishra, Kirti D., Naik, Kartik, Perkins, Edmon, Vermillion, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3
container_end_page 16
container_issue 4
container_start_page 1
container_title IEEE transactions on control systems technology
container_volume 31
creator Reed, James
Abney, Andrew
Mishra, Kirti D.
Naik, Kartik
Perkins, Edmon
Vermillion, Chris
description In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment.
doi_str_mv 10.1109/TCST.2023.3237614
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2023_3237614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025812</ieee_id><sourcerecordid>2828941249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhosouH78AMFD0HPXTJK2yVEWV0VBxXoOaTPVSDddkxTx39uyHjzNMDzv8PJk2RnQJQBVV_XqtV4yyviSM16VIPayBRSFzKksi_1ppyXPy4KXh9lRjJ-UgihYtcheXpNpXO_SDzHekmcM3RA2xrdIhm46kTdvMUQ05MElJE9bDCY5_06cJ4bUY2jGHn0i6374JmuHvT3JDjrTRzz9m8fZ2_qmXt3lj0-396vrx7xlFU85qraDilnGgFPFSuAoJVgOXdMgFwatEpxLKym3ihaKClEKQ5UBZWUjLT_OLnZ_h5icju1Ur_1oB--xTRoUrUSlJuhyB23D8DViTPpzGIOfemkmmVQCmJgp2FFtGGIM2OltcBsTfjRQPevVs14969V_eqfM-S7jEPEfT1khgfFfJdd0Kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828941249</pqid></control><display><type>article</type><title>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Reed, James ; Abney, Andrew ; Mishra, Kirti D. ; Naik, Kartik ; Perkins, Edmon ; Vermillion, Chris</creator><creatorcontrib>Reed, James ; Abney, Andrew ; Mishra, Kirti D. ; Naik, Kartik ; Perkins, Edmon ; Vermillion, Chris ; North Carolina State University, Raleigh, NC (United States)</creatorcontrib><description>In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3237614</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Asymptotic stability ; Autonomous underwater vehicles ; Degrees of freedom ; Disturbances ; Energy harvesting ; Flow stability ; Frequency analysis ; Frequency domain analysis ; HYDRO ENERGY ; Kinematics ; Kites ; Orbital stability ; Orbits ; Path tracking ; Power generation ; Stability analysis ; System Validation ; Trajectory ; Turbines ; Turbulence ; Turbulent flow ; Undersea</subject><ispartof>IEEE transactions on control systems technology, 2023-07, Vol.31 (4), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3</cites><orcidid>0000-0003-1988-5075 ; 0000-0001-7591-0584 ; 0000-0001-9481-6956 ; 0000-0001-7862-6714 ; 0000000175910584 ; 0000000194816956 ; 0000000319885075 ; 0000000178626714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1907479$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reed, James</creatorcontrib><creatorcontrib>Abney, Andrew</creatorcontrib><creatorcontrib>Mishra, Kirti D.</creatorcontrib><creatorcontrib>Naik, Kartik</creatorcontrib><creatorcontrib>Perkins, Edmon</creatorcontrib><creatorcontrib>Vermillion, Chris</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><title>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment.</description><subject>Analytical models</subject><subject>Asymptotic stability</subject><subject>Autonomous underwater vehicles</subject><subject>Degrees of freedom</subject><subject>Disturbances</subject><subject>Energy harvesting</subject><subject>Flow stability</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>HYDRO ENERGY</subject><subject>Kinematics</subject><subject>Kites</subject><subject>Orbital stability</subject><subject>Orbits</subject><subject>Path tracking</subject><subject>Power generation</subject><subject>Stability analysis</subject><subject>System Validation</subject><subject>Trajectory</subject><subject>Turbines</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Undersea</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhosouH78AMFD0HPXTJK2yVEWV0VBxXoOaTPVSDddkxTx39uyHjzNMDzv8PJk2RnQJQBVV_XqtV4yyviSM16VIPayBRSFzKksi_1ppyXPy4KXh9lRjJ-UgihYtcheXpNpXO_SDzHekmcM3RA2xrdIhm46kTdvMUQ05MElJE9bDCY5_06cJ4bUY2jGHn0i6374JmuHvT3JDjrTRzz9m8fZ2_qmXt3lj0-396vrx7xlFU85qraDilnGgFPFSuAoJVgOXdMgFwatEpxLKym3ihaKClEKQ5UBZWUjLT_OLnZ_h5icju1Ur_1oB--xTRoUrUSlJuhyB23D8DViTPpzGIOfemkmmVQCmJgp2FFtGGIM2OltcBsTfjRQPevVs14969V_eqfM-S7jEPEfT1khgfFfJdd0Kg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Reed, James</creator><creator>Abney, Andrew</creator><creator>Mishra, Kirti D.</creator><creator>Naik, Kartik</creator><creator>Perkins, Edmon</creator><creator>Vermillion, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1988-5075</orcidid><orcidid>https://orcid.org/0000-0001-7591-0584</orcidid><orcidid>https://orcid.org/0000-0001-9481-6956</orcidid><orcidid>https://orcid.org/0000-0001-7862-6714</orcidid><orcidid>https://orcid.org/0000000175910584</orcidid><orcidid>https://orcid.org/0000000194816956</orcidid><orcidid>https://orcid.org/0000000319885075</orcidid><orcidid>https://orcid.org/0000000178626714</orcidid></search><sort><creationdate>20230701</creationdate><title>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</title><author>Reed, James ; Abney, Andrew ; Mishra, Kirti D. ; Naik, Kartik ; Perkins, Edmon ; Vermillion, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Asymptotic stability</topic><topic>Autonomous underwater vehicles</topic><topic>Degrees of freedom</topic><topic>Disturbances</topic><topic>Energy harvesting</topic><topic>Flow stability</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>HYDRO ENERGY</topic><topic>Kinematics</topic><topic>Kites</topic><topic>Orbital stability</topic><topic>Orbits</topic><topic>Path tracking</topic><topic>Power generation</topic><topic>Stability analysis</topic><topic>System Validation</topic><topic>Trajectory</topic><topic>Turbines</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Undersea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed, James</creatorcontrib><creatorcontrib>Abney, Andrew</creatorcontrib><creatorcontrib>Mishra, Kirti D.</creatorcontrib><creatorcontrib>Naik, Kartik</creatorcontrib><creatorcontrib>Perkins, Edmon</creatorcontrib><creatorcontrib>Vermillion, Chris</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed, James</au><au>Abney, Andrew</au><au>Mishra, Kirti D.</au><au>Naik, Kartik</au><au>Perkins, Edmon</au><au>Vermillion, Chris</au><aucorp>North Carolina State University, Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>31</volume><issue>4</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3237614</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1988-5075</orcidid><orcidid>https://orcid.org/0000-0001-7591-0584</orcidid><orcidid>https://orcid.org/0000-0001-9481-6956</orcidid><orcidid>https://orcid.org/0000-0001-7862-6714</orcidid><orcidid>https://orcid.org/0000000175910584</orcidid><orcidid>https://orcid.org/0000000194816956</orcidid><orcidid>https://orcid.org/0000000319885075</orcidid><orcidid>https://orcid.org/0000000178626714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2023-07, Vol.31 (4), p.1-16
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2023_3237614
source IEEE Electronic Library (IEL) Journals
subjects Analytical models
Asymptotic stability
Autonomous underwater vehicles
Degrees of freedom
Disturbances
Energy harvesting
Flow stability
Frequency analysis
Frequency domain analysis
HYDRO ENERGY
Kinematics
Kites
Orbital stability
Orbits
Path tracking
Power generation
Stability analysis
System Validation
Trajectory
Turbines
Turbulence
Turbulent flow
Undersea
title Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Performance%20of%20an%20Undersea%20Kite%20Operating%20in%20a%20Turbulent%20Flow%20Field&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Reed,%20James&rft.aucorp=North%20Carolina%20State%20University,%20Raleigh,%20NC%20(United%20States)&rft.date=2023-07-01&rft.volume=31&rft.issue=4&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3237614&rft_dat=%3Cproquest_cross%3E2828941249%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828941249&rft_id=info:pmid/&rft_ieee_id=10025812&rfr_iscdi=true