Loading…
Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field
In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using...
Saved in:
Published in: | IEEE transactions on control systems technology 2023-07, Vol.31 (4), p.1-16 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3 |
container_end_page | 16 |
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on control systems technology |
container_volume | 31 |
creator | Reed, James Abney, Andrew Mishra, Kirti D. Naik, Kartik Perkins, Edmon Vermillion, Chris |
description | In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment. |
doi_str_mv | 10.1109/TCST.2023.3237614 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2023_3237614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025812</ieee_id><sourcerecordid>2828941249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhosouH78AMFD0HPXTJK2yVEWV0VBxXoOaTPVSDddkxTx39uyHjzNMDzv8PJk2RnQJQBVV_XqtV4yyviSM16VIPayBRSFzKksi_1ppyXPy4KXh9lRjJ-UgihYtcheXpNpXO_SDzHekmcM3RA2xrdIhm46kTdvMUQ05MElJE9bDCY5_06cJ4bUY2jGHn0i6374JmuHvT3JDjrTRzz9m8fZ2_qmXt3lj0-396vrx7xlFU85qraDilnGgFPFSuAoJVgOXdMgFwatEpxLKym3ihaKClEKQ5UBZWUjLT_OLnZ_h5icju1Ur_1oB--xTRoUrUSlJuhyB23D8DViTPpzGIOfemkmmVQCmJgp2FFtGGIM2OltcBsTfjRQPevVs14969V_eqfM-S7jEPEfT1khgfFfJdd0Kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828941249</pqid></control><display><type>article</type><title>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Reed, James ; Abney, Andrew ; Mishra, Kirti D. ; Naik, Kartik ; Perkins, Edmon ; Vermillion, Chris</creator><creatorcontrib>Reed, James ; Abney, Andrew ; Mishra, Kirti D. ; Naik, Kartik ; Perkins, Edmon ; Vermillion, Chris ; North Carolina State University, Raleigh, NC (United States)</creatorcontrib><description>In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3237614</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Asymptotic stability ; Autonomous underwater vehicles ; Degrees of freedom ; Disturbances ; Energy harvesting ; Flow stability ; Frequency analysis ; Frequency domain analysis ; HYDRO ENERGY ; Kinematics ; Kites ; Orbital stability ; Orbits ; Path tracking ; Power generation ; Stability analysis ; System Validation ; Trajectory ; Turbines ; Turbulence ; Turbulent flow ; Undersea</subject><ispartof>IEEE transactions on control systems technology, 2023-07, Vol.31 (4), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3</cites><orcidid>0000-0003-1988-5075 ; 0000-0001-7591-0584 ; 0000-0001-9481-6956 ; 0000-0001-7862-6714 ; 0000000175910584 ; 0000000194816956 ; 0000000319885075 ; 0000000178626714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1907479$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reed, James</creatorcontrib><creatorcontrib>Abney, Andrew</creatorcontrib><creatorcontrib>Mishra, Kirti D.</creatorcontrib><creatorcontrib>Naik, Kartik</creatorcontrib><creatorcontrib>Perkins, Edmon</creatorcontrib><creatorcontrib>Vermillion, Chris</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><title>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment.</description><subject>Analytical models</subject><subject>Asymptotic stability</subject><subject>Autonomous underwater vehicles</subject><subject>Degrees of freedom</subject><subject>Disturbances</subject><subject>Energy harvesting</subject><subject>Flow stability</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>HYDRO ENERGY</subject><subject>Kinematics</subject><subject>Kites</subject><subject>Orbital stability</subject><subject>Orbits</subject><subject>Path tracking</subject><subject>Power generation</subject><subject>Stability analysis</subject><subject>System Validation</subject><subject>Trajectory</subject><subject>Turbines</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Undersea</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhosouH78AMFD0HPXTJK2yVEWV0VBxXoOaTPVSDddkxTx39uyHjzNMDzv8PJk2RnQJQBVV_XqtV4yyviSM16VIPayBRSFzKksi_1ppyXPy4KXh9lRjJ-UgihYtcheXpNpXO_SDzHekmcM3RA2xrdIhm46kTdvMUQ05MElJE9bDCY5_06cJ4bUY2jGHn0i6374JmuHvT3JDjrTRzz9m8fZ2_qmXt3lj0-396vrx7xlFU85qraDilnGgFPFSuAoJVgOXdMgFwatEpxLKym3ihaKClEKQ5UBZWUjLT_OLnZ_h5icju1Ur_1oB--xTRoUrUSlJuhyB23D8DViTPpzGIOfemkmmVQCmJgp2FFtGGIM2OltcBsTfjRQPevVs14969V_eqfM-S7jEPEfT1khgfFfJdd0Kg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Reed, James</creator><creator>Abney, Andrew</creator><creator>Mishra, Kirti D.</creator><creator>Naik, Kartik</creator><creator>Perkins, Edmon</creator><creator>Vermillion, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1988-5075</orcidid><orcidid>https://orcid.org/0000-0001-7591-0584</orcidid><orcidid>https://orcid.org/0000-0001-9481-6956</orcidid><orcidid>https://orcid.org/0000-0001-7862-6714</orcidid><orcidid>https://orcid.org/0000000175910584</orcidid><orcidid>https://orcid.org/0000000194816956</orcidid><orcidid>https://orcid.org/0000000319885075</orcidid><orcidid>https://orcid.org/0000000178626714</orcidid></search><sort><creationdate>20230701</creationdate><title>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</title><author>Reed, James ; Abney, Andrew ; Mishra, Kirti D. ; Naik, Kartik ; Perkins, Edmon ; Vermillion, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Asymptotic stability</topic><topic>Autonomous underwater vehicles</topic><topic>Degrees of freedom</topic><topic>Disturbances</topic><topic>Energy harvesting</topic><topic>Flow stability</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>HYDRO ENERGY</topic><topic>Kinematics</topic><topic>Kites</topic><topic>Orbital stability</topic><topic>Orbits</topic><topic>Path tracking</topic><topic>Power generation</topic><topic>Stability analysis</topic><topic>System Validation</topic><topic>Trajectory</topic><topic>Turbines</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Undersea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed, James</creatorcontrib><creatorcontrib>Abney, Andrew</creatorcontrib><creatorcontrib>Mishra, Kirti D.</creatorcontrib><creatorcontrib>Naik, Kartik</creatorcontrib><creatorcontrib>Perkins, Edmon</creatorcontrib><creatorcontrib>Vermillion, Chris</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed, James</au><au>Abney, Andrew</au><au>Mishra, Kirti D.</au><au>Naik, Kartik</au><au>Perkins, Edmon</au><au>Vermillion, Chris</au><aucorp>North Carolina State University, Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>31</volume><issue>4</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this article, we examine the effects of flow disturbances resulting from turbulence on the dynamic behavior of an underwater energy-harvesting kite system that executes periodic figure-8 flight. Due to the periodic nature of the kite's operation, we begin by assessing orbital stability using the Floquet analysis and stroboscopic intersection analysis of a Poincaré section, with the former analysis performed on a simplified "unifoil" model and the latter performed on a six-degree-of-freedom (6-DOF)/flexible tether model. With periodic stability established, a frequency-domain analysis based on a linearization about the kite's path is used to predict the quality of flight path tracking as a function of the turbulence frequency. To validate the accuracy of these simulation-based predictions under flow disturbances, we compare the predictions of the kite's behavior against the results of small-scale tow testing experiments performed in a controlled pool environment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3237614</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1988-5075</orcidid><orcidid>https://orcid.org/0000-0001-7591-0584</orcidid><orcidid>https://orcid.org/0000-0001-9481-6956</orcidid><orcidid>https://orcid.org/0000-0001-7862-6714</orcidid><orcidid>https://orcid.org/0000000175910584</orcidid><orcidid>https://orcid.org/0000000194816956</orcidid><orcidid>https://orcid.org/0000000319885075</orcidid><orcidid>https://orcid.org/0000000178626714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2023-07, Vol.31 (4), p.1-16 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2023_3237614 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Analytical models Asymptotic stability Autonomous underwater vehicles Degrees of freedom Disturbances Energy harvesting Flow stability Frequency analysis Frequency domain analysis HYDRO ENERGY Kinematics Kites Orbital stability Orbits Path tracking Power generation Stability analysis System Validation Trajectory Turbines Turbulence Turbulent flow Undersea |
title | Stability and Performance of an Undersea Kite Operating in a Turbulent Flow Field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Performance%20of%20an%20Undersea%20Kite%20Operating%20in%20a%20Turbulent%20Flow%20Field&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Reed,%20James&rft.aucorp=North%20Carolina%20State%20University,%20Raleigh,%20NC%20(United%20States)&rft.date=2023-07-01&rft.volume=31&rft.issue=4&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3237614&rft_dat=%3Cproquest_cross%3E2828941249%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-e9cf172d2213092613e881d31fbbe34aed94338d803d905904464a09a19d8b8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828941249&rft_id=info:pmid/&rft_ieee_id=10025812&rfr_iscdi=true |