Loading…
Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit
Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via...
Saved in:
Published in: | IEEE transactions on control systems technology 2024-12, p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on control systems technology |
container_volume | |
creator | Botelho, Afonso Rosa, Paulo Lemos, Joao M. |
description | Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 \mu s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees. |
doi_str_mv | 10.1109/TCST.2024.3511266 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2024_3511266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798986</ieee_id><sourcerecordid>10_1109_TCST_2024_3511266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-e70f016464b91222173009711a90546fd7b527b111df6bf90fa43b0d5fe4b4893</originalsourceid><addsrcrecordid>eNpNkM9Kw0AYxBdRsFYfQPCwL5D6ffsv2WMN1RYqHhrxGDbpLl1JmrDZgL69Ke3B08xhZhh-hDwiLBBBPxf5rlgwYGLBJSJT6orMUMosgUzJ68mD4omSXN2Su2H4BkAhWToj69VP3_jaR7rrTW3rYFykxSGMQ7SB5t0xhq6hy6bpahN9d6RfPh7ouz_6dmzppu3HZrD0xcd7cuPM5B8uOiefr6siXyfbj7dNvtwmNYosJjYFB6iEEpVGxhimHECniEaDFMrt02r6VSHi3qnKaXBG8Ar20llRiUzzOcHzbh26YQjWlX3wrQm_JUJ5QlGeUJQnFOUFxdR5One8tfZfPtWZzhT_A6Z5WiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Botelho, Afonso ; Rosa, Paulo ; Lemos, Joao M.</creator><creatorcontrib>Botelho, Afonso ; Rosa, Paulo ; Lemos, Joao M.</creatorcontrib><description>Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2024.3511266</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Attitude control ; Explicit control allocation (CA) ; Firing ; minimum impulse bit (MIB) ; multiparametric linear programming (mpLP) ; multiparametric mixed-integer linear programming (mpMILP) ; Optimization ; Propulsion ; Pulse width modulation ; Resource management ; Space vehicles ; Table lookup ; thruster control allocation (TCA) ; thruster management function (TMF) ; thruster selection problem (TSP) ; Vectors</subject><ispartof>IEEE transactions on control systems technology, 2024-12, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>afonso.botelho@tecnico.ulisboa.pt ; jlml@inesc-id.pt ; prosa@isr.ist.utl.pt</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798986$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Botelho, Afonso</creatorcontrib><creatorcontrib>Rosa, Paulo</creatorcontrib><creatorcontrib>Lemos, Joao M.</creatorcontrib><title>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees.</description><subject>Actuators</subject><subject>Attitude control</subject><subject>Explicit control allocation (CA)</subject><subject>Firing</subject><subject>minimum impulse bit (MIB)</subject><subject>multiparametric linear programming (mpLP)</subject><subject>multiparametric mixed-integer linear programming (mpMILP)</subject><subject>Optimization</subject><subject>Propulsion</subject><subject>Pulse width modulation</subject><subject>Resource management</subject><subject>Space vehicles</subject><subject>Table lookup</subject><subject>thruster control allocation (TCA)</subject><subject>thruster management function (TMF)</subject><subject>thruster selection problem (TSP)</subject><subject>Vectors</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM9Kw0AYxBdRsFYfQPCwL5D6ffsv2WMN1RYqHhrxGDbpLl1JmrDZgL69Ke3B08xhZhh-hDwiLBBBPxf5rlgwYGLBJSJT6orMUMosgUzJ68mD4omSXN2Su2H4BkAhWToj69VP3_jaR7rrTW3rYFykxSGMQ7SB5t0xhq6hy6bpahN9d6RfPh7ouz_6dmzppu3HZrD0xcd7cuPM5B8uOiefr6siXyfbj7dNvtwmNYosJjYFB6iEEpVGxhimHECniEaDFMrt02r6VSHi3qnKaXBG8Ar20llRiUzzOcHzbh26YQjWlX3wrQm_JUJ5QlGeUJQnFOUFxdR5One8tfZfPtWZzhT_A6Z5WiY</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Botelho, Afonso</creator><creator>Rosa, Paulo</creator><creator>Lemos, Joao M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/afonso.botelho@tecnico.ulisboa.pt</orcidid><orcidid>https://orcid.org/jlml@inesc-id.pt</orcidid><orcidid>https://orcid.org/prosa@isr.ist.utl.pt</orcidid></search><sort><creationdate>20241213</creationdate><title>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</title><author>Botelho, Afonso ; Rosa, Paulo ; Lemos, Joao M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-e70f016464b91222173009711a90546fd7b527b111df6bf90fa43b0d5fe4b4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Attitude control</topic><topic>Explicit control allocation (CA)</topic><topic>Firing</topic><topic>minimum impulse bit (MIB)</topic><topic>multiparametric linear programming (mpLP)</topic><topic>multiparametric mixed-integer linear programming (mpMILP)</topic><topic>Optimization</topic><topic>Propulsion</topic><topic>Pulse width modulation</topic><topic>Resource management</topic><topic>Space vehicles</topic><topic>Table lookup</topic><topic>thruster control allocation (TCA)</topic><topic>thruster management function (TMF)</topic><topic>thruster selection problem (TSP)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botelho, Afonso</creatorcontrib><creatorcontrib>Rosa, Paulo</creatorcontrib><creatorcontrib>Lemos, Joao M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botelho, Afonso</au><au>Rosa, Paulo</au><au>Lemos, Joao M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-12-13</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2024.3511266</doi><tpages>12</tpages><orcidid>https://orcid.org/afonso.botelho@tecnico.ulisboa.pt</orcidid><orcidid>https://orcid.org/jlml@inesc-id.pt</orcidid><orcidid>https://orcid.org/prosa@isr.ist.utl.pt</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2024-12, p.1-12 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2024_3511266 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Actuators Attitude control Explicit control allocation (CA) Firing minimum impulse bit (MIB) multiparametric linear programming (mpLP) multiparametric mixed-integer linear programming (mpMILP) Optimization Propulsion Pulse width modulation Resource management Space vehicles Table lookup thruster control allocation (TCA) thruster management function (TMF) thruster selection problem (TSP) Vectors |
title | Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Spacecraft%20Thruster%20Control%20Allocation%20With%20Minimum%20Impulse%20Bit&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Botelho,%20Afonso&rft.date=2024-12-13&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2024.3511266&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCST_2024_3511266%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-e70f016464b91222173009711a90546fd7b527b111df6bf90fa43b0d5fe4b4893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10798986&rfr_iscdi=true |