Loading…

Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit

Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2024-12, p.1-12
Main Authors: Botelho, Afonso, Rosa, Paulo, Lemos, Joao M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on control systems technology
container_volume
creator Botelho, Afonso
Rosa, Paulo
Lemos, Joao M.
description Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 \mu s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees.
doi_str_mv 10.1109/TCST.2024.3511266
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2024_3511266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10798986</ieee_id><sourcerecordid>10_1109_TCST_2024_3511266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-e70f016464b91222173009711a90546fd7b527b111df6bf90fa43b0d5fe4b4893</originalsourceid><addsrcrecordid>eNpNkM9Kw0AYxBdRsFYfQPCwL5D6ffsv2WMN1RYqHhrxGDbpLl1JmrDZgL69Ke3B08xhZhh-hDwiLBBBPxf5rlgwYGLBJSJT6orMUMosgUzJ68mD4omSXN2Su2H4BkAhWToj69VP3_jaR7rrTW3rYFykxSGMQ7SB5t0xhq6hy6bpahN9d6RfPh7ouz_6dmzppu3HZrD0xcd7cuPM5B8uOiefr6siXyfbj7dNvtwmNYosJjYFB6iEEpVGxhimHECniEaDFMrt02r6VSHi3qnKaXBG8Ar20llRiUzzOcHzbh26YQjWlX3wrQm_JUJ5QlGeUJQnFOUFxdR5One8tfZfPtWZzhT_A6Z5WiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Botelho, Afonso ; Rosa, Paulo ; Lemos, Joao M.</creator><creatorcontrib>Botelho, Afonso ; Rosa, Paulo ; Lemos, Joao M.</creatorcontrib><description>Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt; &lt;/inline-formula&gt;s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2024.3511266</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Attitude control ; Explicit control allocation (CA) ; Firing ; minimum impulse bit (MIB) ; multiparametric linear programming (mpLP) ; multiparametric mixed-integer linear programming (mpMILP) ; Optimization ; Propulsion ; Pulse width modulation ; Resource management ; Space vehicles ; Table lookup ; thruster control allocation (TCA) ; thruster management function (TMF) ; thruster selection problem (TSP) ; Vectors</subject><ispartof>IEEE transactions on control systems technology, 2024-12, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>afonso.botelho@tecnico.ulisboa.pt ; jlml@inesc-id.pt ; prosa@isr.ist.utl.pt</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10798986$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Botelho, Afonso</creatorcontrib><creatorcontrib>Rosa, Paulo</creatorcontrib><creatorcontrib>Lemos, Joao M.</creatorcontrib><title>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt; &lt;/inline-formula&gt;s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees.</description><subject>Actuators</subject><subject>Attitude control</subject><subject>Explicit control allocation (CA)</subject><subject>Firing</subject><subject>minimum impulse bit (MIB)</subject><subject>multiparametric linear programming (mpLP)</subject><subject>multiparametric mixed-integer linear programming (mpMILP)</subject><subject>Optimization</subject><subject>Propulsion</subject><subject>Pulse width modulation</subject><subject>Resource management</subject><subject>Space vehicles</subject><subject>Table lookup</subject><subject>thruster control allocation (TCA)</subject><subject>thruster management function (TMF)</subject><subject>thruster selection problem (TSP)</subject><subject>Vectors</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM9Kw0AYxBdRsFYfQPCwL5D6ffsv2WMN1RYqHhrxGDbpLl1JmrDZgL69Ke3B08xhZhh-hDwiLBBBPxf5rlgwYGLBJSJT6orMUMosgUzJ68mD4omSXN2Su2H4BkAhWToj69VP3_jaR7rrTW3rYFykxSGMQ7SB5t0xhq6hy6bpahN9d6RfPh7ouz_6dmzppu3HZrD0xcd7cuPM5B8uOiefr6siXyfbj7dNvtwmNYosJjYFB6iEEpVGxhimHECniEaDFMrt02r6VSHi3qnKaXBG8Ar20llRiUzzOcHzbh26YQjWlX3wrQm_JUJ5QlGeUJQnFOUFxdR5One8tfZfPtWZzhT_A6Z5WiY</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Botelho, Afonso</creator><creator>Rosa, Paulo</creator><creator>Lemos, Joao M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/afonso.botelho@tecnico.ulisboa.pt</orcidid><orcidid>https://orcid.org/jlml@inesc-id.pt</orcidid><orcidid>https://orcid.org/prosa@isr.ist.utl.pt</orcidid></search><sort><creationdate>20241213</creationdate><title>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</title><author>Botelho, Afonso ; Rosa, Paulo ; Lemos, Joao M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-e70f016464b91222173009711a90546fd7b527b111df6bf90fa43b0d5fe4b4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Attitude control</topic><topic>Explicit control allocation (CA)</topic><topic>Firing</topic><topic>minimum impulse bit (MIB)</topic><topic>multiparametric linear programming (mpLP)</topic><topic>multiparametric mixed-integer linear programming (mpMILP)</topic><topic>Optimization</topic><topic>Propulsion</topic><topic>Pulse width modulation</topic><topic>Resource management</topic><topic>Space vehicles</topic><topic>Table lookup</topic><topic>thruster control allocation (TCA)</topic><topic>thruster management function (TMF)</topic><topic>thruster selection problem (TSP)</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botelho, Afonso</creatorcontrib><creatorcontrib>Rosa, Paulo</creatorcontrib><creatorcontrib>Lemos, Joao M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botelho, Afonso</au><au>Rosa, Paulo</au><au>Lemos, Joao M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-12-13</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Thruster control allocation (TCA) is a key functionality for many spacecraft, with a significant impact on control performance, propellant consumption, and fault tolerance. Propellant-optimal solutions are desirable and are either based on onboard numerical optimization, or explicit optimization via the use of offline-generated look-up tables (LUTs). This article proposes a TCA and modulation method of the latter type by using multiparametric programming and presents a novel fast LUT evaluation algorithm. Fault tolerance and the handling of non-attainable control commands with full controllability exploitation are also addressed. Furthermore, the solution is extended to include the non-convex minimum impulse bit (MIB) constraint, where the proposed solution can find the global optimum. The use of this constraint is demonstrated in a close-range orbital rendezvous scenario, yielding significant improvements to the performance of boosts, forced motions, and station-keeping maneuvers, at the cost of greater propellant consumption and computation time. Results in consumer hardware for a 12-thruster configuration show a worst case onboard computation time of 7 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu&lt;/tex-math&gt; &lt;/inline-formula&gt;s and 0.5 ms for the cases without and with the MIB constraint, which are up to two orders of magnitude lower than those for numerical optimization with a state-of-the-art optimizer. The proposed onboard algorithms are simple, non-iterative, and have worst case computational effort guarantees.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2024.3511266</doi><tpages>12</tpages><orcidid>https://orcid.org/afonso.botelho@tecnico.ulisboa.pt</orcidid><orcidid>https://orcid.org/jlml@inesc-id.pt</orcidid><orcidid>https://orcid.org/prosa@isr.ist.utl.pt</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2024-12, p.1-12
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2024_3511266
source IEEE Electronic Library (IEL) Journals
subjects Actuators
Attitude control
Explicit control allocation (CA)
Firing
minimum impulse bit (MIB)
multiparametric linear programming (mpLP)
multiparametric mixed-integer linear programming (mpMILP)
Optimization
Propulsion
Pulse width modulation
Resource management
Space vehicles
Table lookup
thruster control allocation (TCA)
thruster management function (TMF)
thruster selection problem (TSP)
Vectors
title Explicit Spacecraft Thruster Control Allocation With Minimum Impulse Bit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Spacecraft%20Thruster%20Control%20Allocation%20With%20Minimum%20Impulse%20Bit&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Botelho,%20Afonso&rft.date=2024-12-13&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2024.3511266&rft_dat=%3Ccrossref_ieee_%3E10_1109_TCST_2024_3511266%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-e70f016464b91222173009711a90546fd7b527b111df6bf90fa43b0d5fe4b4893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10798986&rfr_iscdi=true