Loading…
High-Performance Video Condensation System
Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backg...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2015-07, Vol.25 (7), p.1113-1124 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3 |
container_end_page | 1124 |
container_issue | 7 |
container_start_page | 1113 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 25 |
creator | Jianqing Zhu Shikun Feng Dong Yi Shengcai Liao Zhen Lei Li, Stan Z. |
description | Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented. |
doi_str_mv | 10.1109/TCSVT.2014.2363738 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2014_2363738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6928452</ieee_id><sourcerecordid>3735797381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsvoJeCN2HrZJJsk6MsaoWCQmuvIW5mdYvd1GR76Nub2uJp5vB_8zMfY9ccxpyDuV9U8-VijMDlGEUpJkKfsAFXSheIoE7zDooXGrk6ZxcprSAntZwM2N20_fwq3ig2Ia5dV9No2XoKoyp0nrrk-jZ0o_ku9bS-ZGeN-050dZxD9v70uKimxez1-aV6mBU1GtUXimvAptTCfKCTuZaMlxpM7UEA90IASlIKS6onBkrTGO9Ael0aNETgxJDdHu5uYvjZUurtKmxjlystL42UCvLHOYWHVB1DSpEau4nt2sWd5WD3TuyfE7t3Yo9OMnRzgFoi-gdys5YKxS-ixFrz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694450109</pqid></control><display><type>article</type><title>High-Performance Video Condensation System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jianqing Zhu ; Shikun Feng ; Dong Yi ; Shengcai Liao ; Zhen Lei ; Li, Stan Z.</creator><creatorcontrib>Jianqing Zhu ; Shikun Feng ; Dong Yi ; Shengcai Liao ; Zhen Lei ; Li, Stan Z.</creatorcontrib><description>Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2014.2363738</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electron tubes ; GPU acceleration ; Graphics processing units ; Image segmentation ; moving object segmentation ; Object segmentation ; online background generation ; Optimization ; Software reviews ; Streaming media ; video condensation system ; Video sequences ; video storage ; video surveillance</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2015-07, Vol.25 (7), p.1113-1124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</citedby><cites>FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6928452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jianqing Zhu</creatorcontrib><creatorcontrib>Shikun Feng</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Shengcai Liao</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><title>High-Performance Video Condensation System</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented.</description><subject>Electron tubes</subject><subject>GPU acceleration</subject><subject>Graphics processing units</subject><subject>Image segmentation</subject><subject>moving object segmentation</subject><subject>Object segmentation</subject><subject>online background generation</subject><subject>Optimization</subject><subject>Software reviews</subject><subject>Streaming media</subject><subject>video condensation system</subject><subject>Video sequences</subject><subject>video storage</subject><subject>video surveillance</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhoMoWKsvoJeCN2HrZJJsk6MsaoWCQmuvIW5mdYvd1GR76Nub2uJp5vB_8zMfY9ccxpyDuV9U8-VijMDlGEUpJkKfsAFXSheIoE7zDooXGrk6ZxcprSAntZwM2N20_fwq3ig2Ia5dV9No2XoKoyp0nrrk-jZ0o_ku9bS-ZGeN-050dZxD9v70uKimxez1-aV6mBU1GtUXimvAptTCfKCTuZaMlxpM7UEA90IASlIKS6onBkrTGO9Ael0aNETgxJDdHu5uYvjZUurtKmxjlystL42UCvLHOYWHVB1DSpEau4nt2sWd5WD3TuyfE7t3Yo9OMnRzgFoi-gdys5YKxS-ixFrz</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Jianqing Zhu</creator><creator>Shikun Feng</creator><creator>Dong Yi</creator><creator>Shengcai Liao</creator><creator>Zhen Lei</creator><creator>Li, Stan Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201507</creationdate><title>High-Performance Video Condensation System</title><author>Jianqing Zhu ; Shikun Feng ; Dong Yi ; Shengcai Liao ; Zhen Lei ; Li, Stan Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Electron tubes</topic><topic>GPU acceleration</topic><topic>Graphics processing units</topic><topic>Image segmentation</topic><topic>moving object segmentation</topic><topic>Object segmentation</topic><topic>online background generation</topic><topic>Optimization</topic><topic>Software reviews</topic><topic>Streaming media</topic><topic>video condensation system</topic><topic>Video sequences</topic><topic>video storage</topic><topic>video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianqing Zhu</creatorcontrib><creatorcontrib>Shikun Feng</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Shengcai Liao</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jianqing Zhu</au><au>Shikun Feng</au><au>Dong Yi</au><au>Shengcai Liao</au><au>Zhen Lei</au><au>Li, Stan Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Video Condensation System</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2015-07</date><risdate>2015</risdate><volume>25</volume><issue>7</issue><spage>1113</spage><epage>1124</epage><pages>1113-1124</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2014.2363738</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2015-07, Vol.25 (7), p.1113-1124 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2014_2363738 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Electron tubes GPU acceleration Graphics processing units Image segmentation moving object segmentation Object segmentation online background generation Optimization Software reviews Streaming media video condensation system Video sequences video storage video surveillance |
title | High-Performance Video Condensation System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Video%20Condensation%20System&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Jianqing%20Zhu&rft.date=2015-07&rft.volume=25&rft.issue=7&rft.spage=1113&rft.epage=1124&rft.pages=1113-1124&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2014.2363738&rft_dat=%3Cproquest_cross%3E3735797381%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1694450109&rft_id=info:pmid/&rft_ieee_id=6928452&rfr_iscdi=true |