Loading…

High-Performance Video Condensation System

Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backg...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2015-07, Vol.25 (7), p.1113-1124
Main Authors: Jianqing Zhu, Shikun Feng, Dong Yi, Shengcai Liao, Zhen Lei, Li, Stan Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3
cites cdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3
container_end_page 1124
container_issue 7
container_start_page 1113
container_title IEEE transactions on circuits and systems for video technology
container_volume 25
creator Jianqing Zhu
Shikun Feng
Dong Yi
Shengcai Liao
Zhen Lei
Li, Stan Z.
description Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented.
doi_str_mv 10.1109/TCSVT.2014.2363738
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2014_2363738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6928452</ieee_id><sourcerecordid>3735797381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsvoJeCN2HrZJJsk6MsaoWCQmuvIW5mdYvd1GR76Nub2uJp5vB_8zMfY9ccxpyDuV9U8-VijMDlGEUpJkKfsAFXSheIoE7zDooXGrk6ZxcprSAntZwM2N20_fwq3ig2Ia5dV9No2XoKoyp0nrrk-jZ0o_ku9bS-ZGeN-050dZxD9v70uKimxez1-aV6mBU1GtUXimvAptTCfKCTuZaMlxpM7UEA90IASlIKS6onBkrTGO9Ael0aNETgxJDdHu5uYvjZUurtKmxjlystL42UCvLHOYWHVB1DSpEau4nt2sWd5WD3TuyfE7t3Yo9OMnRzgFoi-gdys5YKxS-ixFrz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694450109</pqid></control><display><type>article</type><title>High-Performance Video Condensation System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jianqing Zhu ; Shikun Feng ; Dong Yi ; Shengcai Liao ; Zhen Lei ; Li, Stan Z.</creator><creatorcontrib>Jianqing Zhu ; Shikun Feng ; Dong Yi ; Shengcai Liao ; Zhen Lei ; Li, Stan Z.</creatorcontrib><description>Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2014.2363738</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electron tubes ; GPU acceleration ; Graphics processing units ; Image segmentation ; moving object segmentation ; Object segmentation ; online background generation ; Optimization ; Software reviews ; Streaming media ; video condensation system ; Video sequences ; video storage ; video surveillance</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2015-07, Vol.25 (7), p.1113-1124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</citedby><cites>FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6928452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jianqing Zhu</creatorcontrib><creatorcontrib>Shikun Feng</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Shengcai Liao</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><title>High-Performance Video Condensation System</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented.</description><subject>Electron tubes</subject><subject>GPU acceleration</subject><subject>Graphics processing units</subject><subject>Image segmentation</subject><subject>moving object segmentation</subject><subject>Object segmentation</subject><subject>online background generation</subject><subject>Optimization</subject><subject>Software reviews</subject><subject>Streaming media</subject><subject>video condensation system</subject><subject>Video sequences</subject><subject>video storage</subject><subject>video surveillance</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhoMoWKsvoJeCN2HrZJJsk6MsaoWCQmuvIW5mdYvd1GR76Nub2uJp5vB_8zMfY9ccxpyDuV9U8-VijMDlGEUpJkKfsAFXSheIoE7zDooXGrk6ZxcprSAntZwM2N20_fwq3ig2Ia5dV9No2XoKoyp0nrrk-jZ0o_ku9bS-ZGeN-050dZxD9v70uKimxez1-aV6mBU1GtUXimvAptTCfKCTuZaMlxpM7UEA90IASlIKS6onBkrTGO9Ael0aNETgxJDdHu5uYvjZUurtKmxjlystL42UCvLHOYWHVB1DSpEau4nt2sWd5WD3TuyfE7t3Yo9OMnRzgFoi-gdys5YKxS-ixFrz</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Jianqing Zhu</creator><creator>Shikun Feng</creator><creator>Dong Yi</creator><creator>Shengcai Liao</creator><creator>Zhen Lei</creator><creator>Li, Stan Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201507</creationdate><title>High-Performance Video Condensation System</title><author>Jianqing Zhu ; Shikun Feng ; Dong Yi ; Shengcai Liao ; Zhen Lei ; Li, Stan Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Electron tubes</topic><topic>GPU acceleration</topic><topic>Graphics processing units</topic><topic>Image segmentation</topic><topic>moving object segmentation</topic><topic>Object segmentation</topic><topic>online background generation</topic><topic>Optimization</topic><topic>Software reviews</topic><topic>Streaming media</topic><topic>video condensation system</topic><topic>Video sequences</topic><topic>video storage</topic><topic>video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianqing Zhu</creatorcontrib><creatorcontrib>Shikun Feng</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Shengcai Liao</creatorcontrib><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Li, Stan Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jianqing Zhu</au><au>Shikun Feng</au><au>Dong Yi</au><au>Shengcai Liao</au><au>Zhen Lei</au><au>Li, Stan Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Video Condensation System</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2015-07</date><risdate>2015</risdate><volume>25</volume><issue>7</issue><spage>1113</spage><epage>1124</epage><pages>1113-1124</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Video synopsis or condensation is a smart solution for fast video browsing and storage. However, most of the existing methods work offline, where two main phases are required. The first phase is to prepare tubes and background images. The second phase is to rearrange tubes and stitch them into backgrounds. However, with a long video sequence, the first phase is memory consuming for data storage, and the second phase is computationally expensive to rearrange all tubes simultaneously. To overcome these problems, we propose a high-performance video condensation system based on an online content-aware framework. The online framework transforms the optimization problem of tube rearrangement into a stepwise optimization problem. Therefore, it can condense video with much less memory and higher speed than the offline framework. With the aid of this transformation, the proposed system can process input videos and produce condensed videos simultaneously. Thus it is suitable for real-time endless surveillance videos. Meanwhile, the online mechanism allows users to directly visit the condensation video that has been generated. Moreover, the content-aware mechanism makes the proposed system able to automatically determine the duration of a condensed video. Finally, the proposed system uses Graphic Processing Unit (GPU) and multicore techniques to improve the speed. Extensive experiments that validate the high efficiency of the system are presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2014.2363738</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2015-07, Vol.25 (7), p.1113-1124
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2014_2363738
source IEEE Electronic Library (IEL) Journals
subjects Electron tubes
GPU acceleration
Graphics processing units
Image segmentation
moving object segmentation
Object segmentation
online background generation
Optimization
Software reviews
Streaming media
video condensation system
Video sequences
video storage
video surveillance
title High-Performance Video Condensation System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Video%20Condensation%20System&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Jianqing%20Zhu&rft.date=2015-07&rft.volume=25&rft.issue=7&rft.spage=1113&rft.epage=1124&rft.pages=1113-1124&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2014.2363738&rft_dat=%3Cproquest_cross%3E3735797381%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-51802f6839b2a4051e9d4809cd0301d33024e5526ec79069f9da04d86929ee0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1694450109&rft_id=info:pmid/&rft_ieee_id=6928452&rfr_iscdi=true